Metamath Proof Explorer


Theorem monhom

Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses ismon.b 𝐵 = ( Base ‘ 𝐶 )
ismon.h 𝐻 = ( Hom ‘ 𝐶 )
ismon.o · = ( comp ‘ 𝐶 )
ismon.s 𝑀 = ( Mono ‘ 𝐶 )
ismon.c ( 𝜑𝐶 ∈ Cat )
ismon.x ( 𝜑𝑋𝐵 )
ismon.y ( 𝜑𝑌𝐵 )
Assertion monhom ( 𝜑 → ( 𝑋 𝑀 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) )

Proof

Step Hyp Ref Expression
1 ismon.b 𝐵 = ( Base ‘ 𝐶 )
2 ismon.h 𝐻 = ( Hom ‘ 𝐶 )
3 ismon.o · = ( comp ‘ 𝐶 )
4 ismon.s 𝑀 = ( Mono ‘ 𝐶 )
5 ismon.c ( 𝜑𝐶 ∈ Cat )
6 ismon.x ( 𝜑𝑋𝐵 )
7 ismon.y ( 𝜑𝑌𝐵 )
8 1 2 3 4 5 6 7 ismon ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧𝐵 Fun ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑋· 𝑌 ) 𝑔 ) ) ) ) )
9 simpl ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧𝐵 Fun ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( ⟨ 𝑧 , 𝑋· 𝑌 ) 𝑔 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) )
10 8 9 syl6bi ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) )
11 10 ssrdv ( 𝜑 → ( 𝑋 𝑀 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) )