| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismon.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | ismon.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | ismon.o | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 4 |  | ismon.s | ⊢ 𝑀  =  ( Mono ‘ 𝐶 ) | 
						
							| 5 |  | ismon.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 6 |  | ismon.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | ismon.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | ismon | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑋 𝑀 𝑌 )  ↔  ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝑓 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) ) ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑓  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 Fun  ◡ ( 𝑔  ∈  ( 𝑧 𝐻 𝑋 )  ↦  ( 𝑓 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 ) ) )  →  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) ) | 
						
							| 10 | 8 9 | biimtrdi | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑋 𝑀 𝑌 )  →  𝑓  ∈  ( 𝑋 𝐻 𝑌 ) ) ) | 
						
							| 11 | 10 | ssrdv | ⊢ ( 𝜑  →  ( 𝑋 𝑀 𝑌 )  ⊆  ( 𝑋 𝐻 𝑌 ) ) |