Step |
Hyp |
Ref |
Expression |
1 |
|
ismon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
ismon.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
ismon.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
ismon.s |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
5 |
|
ismon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
|
ismon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
ismon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
1 2 3 4 5 6 7
|
ismon |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 Fun ◡ ( 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ↦ ( 𝑓 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) ) ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) |
10 |
8 9
|
syl6bi |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑋 𝑀 𝑌 ) → 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ) ) |
11 |
10
|
ssrdv |
⊢ ( 𝜑 → ( 𝑋 𝑀 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |