| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismon.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | ismon.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | ismon.o | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 4 |  | ismon.s | ⊢ 𝑀  =  ( Mono ‘ 𝐶 ) | 
						
							| 5 |  | ismon.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 6 |  | ismon.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | ismon.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 8 |  | moni.z | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 9 |  | moni.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑋 𝑀 𝑌 ) ) | 
						
							| 10 |  | moni.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑍 𝐻 𝑋 ) ) | 
						
							| 11 |  | moni.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝑍 𝐻 𝑋 ) ) | 
						
							| 12 | 1 2 3 4 5 6 7 | ismon2 | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝑀 𝑌 )  ↔  ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) ) ) | 
						
							| 13 | 9 12 | mpbid | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝑋 𝐻 𝑌 )  ∧  ∀ 𝑧  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) ) | 
						
							| 14 | 13 | simprd | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ ) ) | 
						
							| 15 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑍 )  →  𝐺  ∈  ( 𝑍 𝐻 𝑋 ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑍 )  →  𝑧  =  𝑍 ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑍 )  →  ( 𝑧 𝐻 𝑋 )  =  ( 𝑍 𝐻 𝑋 ) ) | 
						
							| 18 | 15 17 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑍 )  →  𝐺  ∈  ( 𝑧 𝐻 𝑋 ) ) | 
						
							| 19 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑍 )  →  𝐾  ∈  ( 𝑍 𝐻 𝑋 ) ) | 
						
							| 20 | 19 17 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑍 )  →  𝐾  ∈  ( 𝑧 𝐻 𝑋 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  →  𝐾  ∈  ( 𝑧 𝐻 𝑋 ) ) | 
						
							| 22 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  𝑧  =  𝑍 ) | 
						
							| 23 | 22 | opeq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  〈 𝑧 ,  𝑋 〉  =  〈 𝑍 ,  𝑋 〉 ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 )  =  ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) ) | 
						
							| 25 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  𝐹  =  𝐹 ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  𝑔  =  𝐺 ) | 
						
							| 27 | 24 25 26 | oveq123d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐺 ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  ℎ  =  𝐾 ) | 
						
							| 29 | 24 25 28 | oveq123d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐾 ) ) | 
						
							| 30 | 27 29 | eqeq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  ↔  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐺 )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐾 ) ) ) | 
						
							| 31 | 26 28 | eqeq12d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  ( 𝑔  =  ℎ  ↔  𝐺  =  𝐾 ) ) | 
						
							| 32 | 30 31 | imbi12d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  ∧  ℎ  =  𝐾 )  →  ( ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ )  ↔  ( ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐺 )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐾 )  →  𝐺  =  𝐾 ) ) ) | 
						
							| 33 | 21 32 | rspcdv | ⊢ ( ( ( 𝜑  ∧  𝑧  =  𝑍 )  ∧  𝑔  =  𝐺 )  →  ( ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ )  →  ( ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐺 )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐾 )  →  𝐺  =  𝐾 ) ) ) | 
						
							| 34 | 18 33 | rspcimdv | ⊢ ( ( 𝜑  ∧  𝑧  =  𝑍 )  →  ( ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ )  →  ( ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐺 )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐾 )  →  𝐺  =  𝐾 ) ) ) | 
						
							| 35 | 8 34 | rspcimdv | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑧 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) 𝑔 )  =  ( 𝐹 ( 〈 𝑧 ,  𝑋 〉  ·  𝑌 ) ℎ )  →  𝑔  =  ℎ )  →  ( ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐺 )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐾 )  →  𝐺  =  𝐾 ) ) ) | 
						
							| 36 | 14 35 | mpd | ⊢ ( 𝜑  →  ( ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐺 )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐾 )  →  𝐺  =  𝐾 ) ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝐺  =  𝐾  →  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐺 )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐾 ) ) | 
						
							| 38 | 36 37 | impbid1 | ⊢ ( 𝜑  →  ( ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐺 )  =  ( 𝐹 ( 〈 𝑍 ,  𝑋 〉  ·  𝑌 ) 𝐾 )  ↔  𝐺  =  𝐾 ) ) |