Step |
Hyp |
Ref |
Expression |
1 |
|
ismon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
ismon.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
ismon.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
ismon.s |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
5 |
|
ismon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
6 |
|
ismon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
ismon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
moni.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
9 |
|
moni.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) |
10 |
|
moni.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 𝐻 𝑋 ) ) |
11 |
|
moni.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 𝐻 𝑋 ) ) |
12 |
1 2 3 4 5 6 7
|
ismon2 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
13 |
9 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
14 |
13
|
simprd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐺 ∈ ( 𝑍 𝐻 𝑋 ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝑧 = 𝑍 ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( 𝑧 𝐻 𝑋 ) = ( 𝑍 𝐻 𝑋 ) ) |
18 |
15 17
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐺 ∈ ( 𝑧 𝐻 𝑋 ) ) |
19 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐾 ∈ ( 𝑍 𝐻 𝑋 ) ) |
20 |
19 17
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐾 ∈ ( 𝑧 𝐻 𝑋 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) → 𝐾 ∈ ( 𝑧 𝐻 𝑋 ) ) |
22 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → 𝑧 = 𝑍 ) |
23 |
22
|
opeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → 〈 𝑧 , 𝑋 〉 = 〈 𝑍 , 𝑋 〉 ) |
24 |
23
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) = ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) ) |
25 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → 𝐹 = 𝐹 ) |
26 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → 𝑔 = 𝐺 ) |
27 |
24 25 26
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) ) |
28 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ℎ = 𝐾 ) |
29 |
24 25 28
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) ) |
30 |
27 29
|
eqeq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) ↔ ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) ) ) |
31 |
26 28
|
eqeq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( 𝑔 = ℎ ↔ 𝐺 = 𝐾 ) ) |
32 |
30 31
|
imbi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ↔ ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) ) |
33 |
21 32
|
rspcdv |
⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) → ( ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) ) |
34 |
18 33
|
rspcimdv |
⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) ) |
35 |
8 34
|
rspcimdv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) ) |
36 |
14 35
|
mpd |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) |
37 |
|
oveq2 |
⊢ ( 𝐺 = 𝐾 → ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) ) |
38 |
36 37
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) ↔ 𝐺 = 𝐾 ) ) |