Step |
Hyp |
Ref |
Expression |
1 |
|
monmat2matmon.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
monmat2matmon.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
monmat2matmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
monmat2matmon.m1 |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
5 |
|
monmat2matmon.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
6 |
|
monmat2matmon.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
7 |
|
monmat2matmon.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
8 |
|
monmat2matmon.k |
⊢ 𝐾 = ( Base ‘ 𝐴 ) |
9 |
|
monmat2matmon.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
10 |
|
monmat2matmon.i |
⊢ 𝐼 = ( 𝑁 pMatToMatPoly 𝑅 ) |
11 |
|
monmat2matmon.e2 |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
12 |
|
monmat2matmon.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
13 |
|
monmat2matmon.m2 |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
14 |
|
monmat2matmon.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
15 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
16 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝑁 ∈ Fin ) |
17 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝑅 ∈ Ring ) |
18 |
7 8 14 1 2 3 13 11 12
|
mat2pmatscmxcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ∈ 𝐵 ) |
19 |
1 2 3 4 5 6 7 9 10
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
21 |
15 20
|
sylanl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
22 |
|
simpll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
23 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) |
24 |
23
|
anim1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ) |
25 |
|
df-3an |
⊢ ( ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ↔ ( ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ) |
26 |
24 25
|
sylibr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ) |
27 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
28 |
1 2 7 8 27 11 12 13 14
|
monmatcollpw |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ) → ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) = if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ) |
29 |
22 26 28
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) = if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ) |
30 |
29
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
31 |
15
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) ) |
32 |
31
|
anim2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) ) |
33 |
32
|
anim1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ) ) |
34 |
33
|
imdistanri |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) ) |
35 |
|
ovif |
⊢ ( if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
36 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
37 |
9
|
ply1sca |
⊢ ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
40 |
39
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 0g ‘ 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) |
41 |
40
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
42 |
9
|
ply1lmod |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ LMod ) |
43 |
36 42
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑄 ∈ LMod ) |
45 |
9
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
46 |
36 45
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
47 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
48 |
47
|
ringmgp |
⊢ ( 𝑄 ∈ Ring → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
49 |
46 48
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
50 |
49
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
51 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
52 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
53 |
6 9 52
|
vr1cl |
⊢ ( 𝐴 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑄 ) ) |
54 |
36 53
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑋 ∈ ( Base ‘ 𝑄 ) ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ ( Base ‘ 𝑄 ) ) |
56 |
47 52
|
mgpbas |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( mulGrp ‘ 𝑄 ) ) |
57 |
56 5
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑄 ) ∈ Mnd ∧ 𝑘 ∈ ℕ0 ∧ 𝑋 ∈ ( Base ‘ 𝑄 ) ) → ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) |
58 |
50 51 55 57
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) |
59 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
60 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) |
61 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
62 |
52 59 4 60 61
|
lmod0vs |
⊢ ( ( 𝑄 ∈ LMod ∧ ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑄 ) ) |
63 |
44 58 62
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑄 ) ) |
64 |
41 63
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑄 ) ) |
65 |
64
|
ifeq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
66 |
35 65
|
syl5eq |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
67 |
34 66
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
68 |
30 67
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
69 |
68
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) ) |
70 |
69
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) ) ) |
71 |
|
ringmnd |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ Mnd ) |
72 |
46 71
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Mnd ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝑄 ∈ Mnd ) |
74 |
|
nn0ex |
⊢ ℕ0 ∈ V |
75 |
74
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ℕ0 ∈ V ) |
76 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝐿 ∈ ℕ0 ) |
77 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
78 |
38
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝐴 ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
79 |
8 78
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
80 |
79
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑀 ∈ 𝐾 ↔ 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ) |
81 |
80
|
biimpcd |
⊢ ( 𝑀 ∈ 𝐾 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ) |
82 |
81
|
adantr |
⊢ ( ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ) |
83 |
82
|
impcom |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
84 |
83
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
85 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) |
86 |
52 59 4 85
|
lmodvscl |
⊢ ( ( 𝑄 ∈ LMod ∧ 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ∧ ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) → ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑄 ) ) |
87 |
44 84 58 86
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑄 ) ) |
88 |
87
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑄 ) ) |
89 |
61 73 75 76 77 88
|
gsummpt1n0 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
90 |
15 89
|
sylanl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
91 |
70 90
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
92 |
|
csbov2g |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑀 ∗ ⦋ 𝐿 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) ) ) |
93 |
|
csbov1g |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( ⦋ 𝐿 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) ) |
94 |
|
csbvarg |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ 𝑘 = 𝐿 ) |
95 |
94
|
oveq1d |
⊢ ( 𝐿 ∈ ℕ0 → ( ⦋ 𝐿 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) = ( 𝐿 ↑ 𝑋 ) ) |
96 |
93 95
|
eqtrd |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( 𝐿 ↑ 𝑋 ) ) |
97 |
96
|
oveq2d |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝑀 ∗ ⦋ 𝐿 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑀 ∗ ( 𝐿 ↑ 𝑋 ) ) ) |
98 |
92 97
|
eqtrd |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑀 ∗ ( 𝐿 ↑ 𝑋 ) ) ) |
99 |
98
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑀 ∗ ( 𝐿 ↑ 𝑋 ) ) ) |
100 |
21 91 99
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ) = ( 𝑀 ∗ ( 𝐿 ↑ 𝑋 ) ) ) |