| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monmat2matmon.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
monmat2matmon.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
monmat2matmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
monmat2matmon.m1 |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
| 5 |
|
monmat2matmon.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 6 |
|
monmat2matmon.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
| 7 |
|
monmat2matmon.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 8 |
|
monmat2matmon.k |
⊢ 𝐾 = ( Base ‘ 𝐴 ) |
| 9 |
|
monmat2matmon.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 10 |
|
monmat2matmon.i |
⊢ 𝐼 = ( 𝑁 pMatToMatPoly 𝑅 ) |
| 11 |
|
monmat2matmon.e2 |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 12 |
|
monmat2matmon.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
| 13 |
|
monmat2matmon.m2 |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
| 14 |
|
monmat2matmon.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 15 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 16 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝑁 ∈ Fin ) |
| 17 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝑅 ∈ Ring ) |
| 18 |
7 8 14 1 2 3 13 11 12
|
mat2pmatscmxcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ∈ 𝐵 ) |
| 19 |
1 2 3 4 5 6 7 9 10
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 21 |
15 20
|
sylanl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 22 |
|
simpll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
| 23 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) |
| 24 |
23
|
anim1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ) |
| 25 |
|
df-3an |
⊢ ( ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ↔ ( ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ) |
| 27 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 28 |
1 2 7 8 27 11 12 13 14
|
monmatcollpw |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ) → ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) = if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ) |
| 29 |
22 26 28
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) = if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ) |
| 30 |
29
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 31 |
15
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) ) |
| 32 |
31
|
anim2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) ) |
| 33 |
32
|
anim1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ) ) |
| 34 |
33
|
imdistanri |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) ) |
| 35 |
|
ovif |
⊢ ( if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 36 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 37 |
9
|
ply1sca |
⊢ ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
| 40 |
39
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 0g ‘ 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 41 |
40
|
oveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 42 |
9
|
ply1lmod |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ LMod ) |
| 43 |
36 42
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑄 ∈ LMod ) |
| 45 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
| 46 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 47 |
45 46
|
mgpbas |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( mulGrp ‘ 𝑄 ) ) |
| 48 |
9
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
| 49 |
36 48
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Ring ) |
| 50 |
45
|
ringmgp |
⊢ ( 𝑄 ∈ Ring → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
| 51 |
49 50
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
| 52 |
51
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
| 53 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 54 |
6 9 46
|
vr1cl |
⊢ ( 𝐴 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑄 ) ) |
| 55 |
36 54
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑋 ∈ ( Base ‘ 𝑄 ) ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ ( Base ‘ 𝑄 ) ) |
| 57 |
47 5 52 53 56
|
mulgnn0cld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) |
| 58 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
| 59 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) ) = ( 0g ‘ ( Scalar ‘ 𝑄 ) ) |
| 60 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
| 61 |
46 58 4 59 60
|
lmod0vs |
⊢ ( ( 𝑄 ∈ LMod ∧ ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑄 ) ) |
| 62 |
44 57 61
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑄 ) ) |
| 63 |
41 62
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑄 ) ) |
| 64 |
63
|
ifeq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( ( 0g ‘ 𝐴 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
| 65 |
35 64
|
eqtrid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
| 66 |
34 65
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( if ( 𝑘 = 𝐿 , 𝑀 , ( 0g ‘ 𝐴 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
| 67 |
30 66
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) = if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
| 68 |
67
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) ) ) |
| 70 |
|
ringmnd |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ Mnd ) |
| 71 |
49 70
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ Mnd ) |
| 72 |
71
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝑄 ∈ Mnd ) |
| 73 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 74 |
73
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ℕ0 ∈ V ) |
| 75 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝐿 ∈ ℕ0 ) |
| 76 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) |
| 77 |
38
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( Base ‘ 𝐴 ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 78 |
8 77
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 79 |
78
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑀 ∈ 𝐾 ↔ 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ) |
| 80 |
79
|
biimpcd |
⊢ ( 𝑀 ∈ 𝐾 → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) ) |
| 82 |
81
|
impcom |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) |
| 84 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) ) = ( Base ‘ ( Scalar ‘ 𝑄 ) ) |
| 85 |
46 58 4 84
|
lmodvscl |
⊢ ( ( 𝑄 ∈ LMod ∧ 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑄 ) ) ∧ ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑄 ) ) → ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 86 |
44 83 57 85
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 87 |
86
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ ( Base ‘ 𝑄 ) ) |
| 88 |
60 72 74 75 76 87
|
gsummpt1n0 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 89 |
15 88
|
sylanl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 𝐿 , ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) , ( 0g ‘ 𝑄 ) ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 90 |
69 89
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 91 |
|
csbov2g |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑀 ∗ ⦋ 𝐿 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) ) ) |
| 92 |
|
csbov1g |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( ⦋ 𝐿 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) ) |
| 93 |
|
csbvarg |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ 𝑘 = 𝐿 ) |
| 94 |
93
|
oveq1d |
⊢ ( 𝐿 ∈ ℕ0 → ( ⦋ 𝐿 / 𝑘 ⦌ 𝑘 ↑ 𝑋 ) = ( 𝐿 ↑ 𝑋 ) ) |
| 95 |
92 94
|
eqtrd |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) = ( 𝐿 ↑ 𝑋 ) ) |
| 96 |
95
|
oveq2d |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝑀 ∗ ⦋ 𝐿 / 𝑘 ⦌ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑀 ∗ ( 𝐿 ↑ 𝑋 ) ) ) |
| 97 |
91 96
|
eqtrd |
⊢ ( 𝐿 ∈ ℕ0 → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑀 ∗ ( 𝐿 ↑ 𝑋 ) ) ) |
| 98 |
97
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ⦋ 𝐿 / 𝑘 ⦌ ( 𝑀 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 𝑀 ∗ ( 𝐿 ↑ 𝑋 ) ) ) |
| 99 |
21 90 98
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ) ) → ( 𝐼 ‘ ( ( 𝐿 𝐸 𝑌 ) · ( 𝑇 ‘ 𝑀 ) ) ) = ( 𝑀 ∗ ( 𝐿 ↑ 𝑋 ) ) ) |