Metamath Proof Explorer


Theorem monoord

Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses monoord.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
monoord.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ ℝ )
monoord.3 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
Assertion monoord ( 𝜑 → ( 𝐹𝑀 ) ≤ ( 𝐹𝑁 ) )

Proof

Step Hyp Ref Expression
1 monoord.1 ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
2 monoord.2 ( ( 𝜑𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹𝑘 ) ∈ ℝ )
3 monoord.3 ( ( 𝜑𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
4 eluzfz2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) )
5 1 4 syl ( 𝜑𝑁 ∈ ( 𝑀 ... 𝑁 ) )
6 eleq1 ( 𝑥 = 𝑀 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) )
7 fveq2 ( 𝑥 = 𝑀 → ( 𝐹𝑥 ) = ( 𝐹𝑀 ) )
8 7 breq2d ( 𝑥 = 𝑀 → ( ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ↔ ( 𝐹𝑀 ) ≤ ( 𝐹𝑀 ) ) )
9 6 8 imbi12d ( 𝑥 = 𝑀 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ) ↔ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑀 ) ) ) )
10 9 imbi2d ( 𝑥 = 𝑀 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑀 ) ) ) ) )
11 eleq1 ( 𝑥 = 𝑛 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) )
12 fveq2 ( 𝑥 = 𝑛 → ( 𝐹𝑥 ) = ( 𝐹𝑛 ) )
13 12 breq2d ( 𝑥 = 𝑛 → ( ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ↔ ( 𝐹𝑀 ) ≤ ( 𝐹𝑛 ) ) )
14 11 13 imbi12d ( 𝑥 = 𝑛 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ) ↔ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑛 ) ) ) )
15 14 imbi2d ( 𝑥 = 𝑛 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑛 ) ) ) ) )
16 eleq1 ( 𝑥 = ( 𝑛 + 1 ) → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) )
17 fveq2 ( 𝑥 = ( 𝑛 + 1 ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
18 17 breq2d ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ↔ ( 𝐹𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
19 16 18 imbi12d ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) )
20 19 imbi2d ( 𝑥 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) )
21 eleq1 ( 𝑥 = 𝑁 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) )
22 fveq2 ( 𝑥 = 𝑁 → ( 𝐹𝑥 ) = ( 𝐹𝑁 ) )
23 22 breq2d ( 𝑥 = 𝑁 → ( ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ↔ ( 𝐹𝑀 ) ≤ ( 𝐹𝑁 ) ) )
24 21 23 imbi12d ( 𝑥 = 𝑁 → ( ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ) ↔ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑁 ) ) ) )
25 24 imbi2d ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑥 ) ) ) ↔ ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑁 ) ) ) ) )
26 fveq2 ( 𝑘 = 𝑀 → ( 𝐹𝑘 ) = ( 𝐹𝑀 ) )
27 26 eleq1d ( 𝑘 = 𝑀 → ( ( 𝐹𝑘 ) ∈ ℝ ↔ ( 𝐹𝑀 ) ∈ ℝ ) )
28 2 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) ∈ ℝ )
29 eluzfz1 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) )
30 1 29 syl ( 𝜑𝑀 ∈ ( 𝑀 ... 𝑁 ) )
31 27 28 30 rspcdva ( 𝜑 → ( 𝐹𝑀 ) ∈ ℝ )
32 31 leidd ( 𝜑 → ( 𝐹𝑀 ) ≤ ( 𝐹𝑀 ) )
33 32 a1d ( 𝜑 → ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑀 ) ) )
34 peano2fzr ( ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) )
35 34 adantl ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) )
36 35 expr ( ( 𝜑𝑛 ∈ ( ℤ𝑀 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) )
37 36 imim1d ( ( 𝜑𝑛 ∈ ( ℤ𝑀 ) ) → ( ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑛 ) ) → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑛 ) ) ) )
38 fveq2 ( 𝑘 = 𝑛 → ( 𝐹𝑘 ) = ( 𝐹𝑛 ) )
39 fvoveq1 ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
40 38 39 breq12d ( 𝑘 = 𝑛 → ( ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
41 3 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
42 41 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
43 simprl ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( ℤ𝑀 ) )
44 eluzelz ( 𝑛 ∈ ( ℤ𝑀 ) → 𝑛 ∈ ℤ )
45 43 44 syl ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ℤ )
46 simprr ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) )
47 elfzuz3 ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) )
48 46 47 syl ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑁 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) )
49 eluzp1m1 ( ( 𝑛 ∈ ℤ ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑛 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑛 ) )
50 45 48 49 syl2anc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑛 ) )
51 elfzuzb ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑁 − 1 ) ∈ ( ℤ𝑛 ) ) )
52 43 50 51 sylanbrc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) )
53 40 42 52 rspcdva ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
54 31 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹𝑀 ) ∈ ℝ )
55 38 eleq1d ( 𝑘 = 𝑛 → ( ( 𝐹𝑘 ) ∈ ℝ ↔ ( 𝐹𝑛 ) ∈ ℝ ) )
56 28 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹𝑘 ) ∈ ℝ )
57 55 56 35 rspcdva ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹𝑛 ) ∈ ℝ )
58 fveq2 ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
59 58 eleq1d ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) )
60 59 56 46 rspcdva ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ )
61 letr ( ( ( 𝐹𝑀 ) ∈ ℝ ∧ ( 𝐹𝑛 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) → ( ( ( 𝐹𝑀 ) ≤ ( 𝐹𝑛 ) ∧ ( 𝐹𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
62 54 57 60 61 syl3anc ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( ( 𝐹𝑀 ) ≤ ( 𝐹𝑛 ) ∧ ( 𝐹𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( 𝐹𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
63 53 62 mpan2d ( ( 𝜑 ∧ ( 𝑛 ∈ ( ℤ𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) → ( ( 𝐹𝑀 ) ≤ ( 𝐹𝑛 ) → ( 𝐹𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
64 37 63 animpimp2impd ( 𝑛 ∈ ( ℤ𝑀 ) → ( ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑛 ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) ) )
65 10 15 20 25 33 64 uzind4i ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑁 ) ) ) )
66 1 65 mpcom ( 𝜑 → ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝐹𝑀 ) ≤ ( 𝐹𝑁 ) ) )
67 5 66 mpd ( 𝜑 → ( 𝐹𝑀 ) ≤ ( 𝐹𝑁 ) )