| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monoord2.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 2 |
|
monoord2.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 3 |
|
monoord2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 4 |
2
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → - ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 5 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) : ( 𝑀 ... 𝑁 ) ⟶ ℝ ) |
| 6 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 7 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 8 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 10 |
8 9
|
breq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
| 11 |
10
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 12 |
7 11
|
sylib |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 13 |
12
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) ) |
| 16 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 18 |
|
fzp1elp1 |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 20 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 21 |
1 20
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 22 |
21
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 23 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 24 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 25 |
22 23 24
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
| 28 |
19 27
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 29 |
15 17 28
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 30 |
9
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) ) |
| 31 |
|
fzssp1 |
⊢ ( 𝑀 ... ( 𝑁 − 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) |
| 32 |
31 26
|
sseqtrid |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 33 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
| 34 |
30 17 33
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ ) |
| 35 |
29 34
|
lenegd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ↔ - ( 𝐹 ‘ 𝑛 ) ≤ - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 36 |
13 35
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → - ( 𝐹 ‘ 𝑛 ) ≤ - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 37 |
9
|
negeqd |
⊢ ( 𝑘 = 𝑛 → - ( 𝐹 ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑛 ) ) |
| 38 |
|
eqid |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) |
| 39 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑛 ) ∈ V |
| 40 |
37 38 39
|
fvmpt |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) = - ( 𝐹 ‘ 𝑛 ) ) |
| 41 |
33 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) = - ( 𝐹 ‘ 𝑛 ) ) |
| 42 |
14
|
negeqd |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → - ( 𝐹 ‘ 𝑘 ) = - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 43 |
|
negex |
⊢ - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ V |
| 44 |
42 38 43
|
fvmpt |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑛 + 1 ) ) = - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 45 |
28 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑛 + 1 ) ) = - ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 46 |
36 41 45
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) ≤ ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑛 + 1 ) ) ) |
| 47 |
1 6 46
|
monoord |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑀 ) ≤ ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑁 ) ) |
| 48 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 49 |
1 48
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 51 |
50
|
negeqd |
⊢ ( 𝑘 = 𝑀 → - ( 𝐹 ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑀 ) ) |
| 52 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑀 ) ∈ V |
| 53 |
51 38 52
|
fvmpt |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑀 ) = - ( 𝐹 ‘ 𝑀 ) ) |
| 54 |
49 53
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑀 ) = - ( 𝐹 ‘ 𝑀 ) ) |
| 55 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 56 |
1 55
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) |
| 58 |
57
|
negeqd |
⊢ ( 𝑘 = 𝑁 → - ( 𝐹 ‘ 𝑘 ) = - ( 𝐹 ‘ 𝑁 ) ) |
| 59 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑁 ) ∈ V |
| 60 |
58 38 59
|
fvmpt |
⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑁 ) = - ( 𝐹 ‘ 𝑁 ) ) |
| 61 |
56 60
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ - ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑁 ) = - ( 𝐹 ‘ 𝑁 ) ) |
| 62 |
47 54 61
|
3brtr3d |
⊢ ( 𝜑 → - ( 𝐹 ‘ 𝑀 ) ≤ - ( 𝐹 ‘ 𝑁 ) ) |
| 63 |
57
|
eleq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) ) |
| 64 |
63 16 56
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 65 |
50
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) ) |
| 66 |
65 16 49
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ ) |
| 67 |
64 66
|
lenegd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑀 ) ↔ - ( 𝐹 ‘ 𝑀 ) ≤ - ( 𝐹 ‘ 𝑁 ) ) ) |
| 68 |
62 67
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑀 ) ) |