Step |
Hyp |
Ref |
Expression |
1 |
|
monoord2xrv.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
monoord2xrv.x |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
3 |
|
monoord2xrv.l |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
4 |
2
|
xnegcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → -𝑒 ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
5 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) : ( 𝑀 ... 𝑁 ) ⟶ ℝ* ) |
6 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) ∈ ℝ* ) |
7 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
8 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
10 |
8 9
|
breq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) ) |
11 |
10
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
12 |
7 11
|
sylib |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
13 |
12
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ) |
14 |
|
fzp1elp1 |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
16 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
17 |
1 16
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
18 |
17
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
19 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
20 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
22 |
21
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
24 |
15 23
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
25 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ) |
27 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
28 |
27
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ↔ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ* ) ) |
29 |
28
|
rspcv |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ* ) ) |
30 |
24 26 29
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ* ) |
31 |
|
fzssp1 |
⊢ ( 𝑀 ... ( 𝑁 − 1 ) ) ⊆ ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) |
32 |
31 22
|
sseqtrid |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 − 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
33 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) |
34 |
9
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ↔ ( 𝐹 ‘ 𝑛 ) ∈ ℝ* ) ) |
35 |
34
|
rspcv |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* → ( 𝐹 ‘ 𝑛 ) ∈ ℝ* ) ) |
36 |
33 26 35
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℝ* ) |
37 |
|
xleneg |
⊢ ( ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑛 ) ∈ ℝ* ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ↔ -𝑒 ( 𝐹 ‘ 𝑛 ) ≤ -𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
38 |
30 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) ≤ ( 𝐹 ‘ 𝑛 ) ↔ -𝑒 ( 𝐹 ‘ 𝑛 ) ≤ -𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
39 |
13 38
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → -𝑒 ( 𝐹 ‘ 𝑛 ) ≤ -𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
40 |
9
|
xnegeqd |
⊢ ( 𝑘 = 𝑛 → -𝑒 ( 𝐹 ‘ 𝑘 ) = -𝑒 ( 𝐹 ‘ 𝑛 ) ) |
41 |
|
eqid |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) |
42 |
|
xnegex |
⊢ -𝑒 ( 𝐹 ‘ 𝑛 ) ∈ V |
43 |
40 41 42
|
fvmpt |
⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) = -𝑒 ( 𝐹 ‘ 𝑛 ) ) |
44 |
33 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) = -𝑒 ( 𝐹 ‘ 𝑛 ) ) |
45 |
27
|
xnegeqd |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → -𝑒 ( 𝐹 ‘ 𝑘 ) = -𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
46 |
|
xnegex |
⊢ -𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ V |
47 |
45 41 46
|
fvmpt |
⊢ ( ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑛 + 1 ) ) = -𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
48 |
24 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑛 + 1 ) ) = -𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
49 |
39 44 48
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑛 ) ≤ ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ ( 𝑛 + 1 ) ) ) |
50 |
1 6 49
|
monoordxrv |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑀 ) ≤ ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑁 ) ) |
51 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
52 |
1 51
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
53 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
54 |
53
|
xnegeqd |
⊢ ( 𝑘 = 𝑀 → -𝑒 ( 𝐹 ‘ 𝑘 ) = -𝑒 ( 𝐹 ‘ 𝑀 ) ) |
55 |
|
xnegex |
⊢ -𝑒 ( 𝐹 ‘ 𝑀 ) ∈ V |
56 |
54 41 55
|
fvmpt |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑀 ) = -𝑒 ( 𝐹 ‘ 𝑀 ) ) |
57 |
52 56
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑀 ) = -𝑒 ( 𝐹 ‘ 𝑀 ) ) |
58 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
59 |
1 58
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
60 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) |
61 |
60
|
xnegeqd |
⊢ ( 𝑘 = 𝑁 → -𝑒 ( 𝐹 ‘ 𝑘 ) = -𝑒 ( 𝐹 ‘ 𝑁 ) ) |
62 |
|
xnegex |
⊢ -𝑒 ( 𝐹 ‘ 𝑁 ) ∈ V |
63 |
61 41 62
|
fvmpt |
⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑁 ) = -𝑒 ( 𝐹 ‘ 𝑁 ) ) |
64 |
59 63
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ -𝑒 ( 𝐹 ‘ 𝑘 ) ) ‘ 𝑁 ) = -𝑒 ( 𝐹 ‘ 𝑁 ) ) |
65 |
50 57 64
|
3brtr3d |
⊢ ( 𝜑 → -𝑒 ( 𝐹 ‘ 𝑀 ) ≤ -𝑒 ( 𝐹 ‘ 𝑁 ) ) |
66 |
60
|
eleq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ* ) ) |
67 |
66
|
rspcv |
⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* → ( 𝐹 ‘ 𝑁 ) ∈ ℝ* ) ) |
68 |
59 25 67
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ* ) |
69 |
53
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ* ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) ) |
70 |
69
|
rspcv |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ* → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) ) |
71 |
52 25 70
|
sylc |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) |
72 |
|
xleneg |
⊢ ( ( ( 𝐹 ‘ 𝑁 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑀 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑀 ) ↔ -𝑒 ( 𝐹 ‘ 𝑀 ) ≤ -𝑒 ( 𝐹 ‘ 𝑁 ) ) ) |
73 |
68 71 72
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑀 ) ↔ -𝑒 ( 𝐹 ‘ 𝑀 ) ≤ -𝑒 ( 𝐹 ‘ 𝑁 ) ) ) |
74 |
65 73
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝐹 ‘ 𝑀 ) ) |