Step |
Hyp |
Ref |
Expression |
1 |
|
monotoddzz.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 < 𝑦 → 𝐸 < 𝐹 ) ) |
2 |
|
monotoddzz.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝐸 ∈ ℝ ) |
3 |
|
monotoddzz.3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → 𝐺 = - 𝐹 ) |
4 |
|
monotoddzz.4 |
⊢ ( 𝑥 = 𝐴 → 𝐸 = 𝐶 ) |
5 |
|
monotoddzz.5 |
⊢ ( 𝑥 = 𝐵 → 𝐸 = 𝐷 ) |
6 |
|
monotoddzz.6 |
⊢ ( 𝑥 = 𝑦 → 𝐸 = 𝐹 ) |
7 |
|
monotoddzz.7 |
⊢ ( 𝑥 = - 𝑦 → 𝐸 = 𝐺 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℤ ) |
9 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) |
10 |
9
|
nfel1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ∈ ℝ |
11 |
8 10
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ∈ ℝ ) |
12 |
|
eleq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ ) ) |
13 |
12
|
anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝑎 ∈ ℤ ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) ∈ ℝ ↔ ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ∈ ℝ ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ∈ ℝ ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
18 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ ↦ 𝐸 ) = ( 𝑥 ∈ ℤ ↦ 𝐸 ) |
19 |
18
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝐸 ∈ ℝ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) = 𝐸 ) |
20 |
17 2 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) = 𝐸 ) |
21 |
20 2
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) ∈ ℝ ) |
22 |
11 16 21
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ∈ ℝ ) |
23 |
|
eleq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∈ ℤ ↔ 𝑎 ∈ ℤ ) ) |
24 |
23
|
anbi2d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝑎 ∈ ℤ ) ) ) |
25 |
|
negeq |
⊢ ( 𝑦 = 𝑎 → - 𝑦 = - 𝑎 ) |
26 |
25
|
fveq2d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ - 𝑦 ) = ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ - 𝑎 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑦 = 𝑎 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ) |
28 |
27
|
negeqd |
⊢ ( 𝑦 = 𝑎 → - ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = - ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ) |
29 |
26 28
|
eqeq12d |
⊢ ( 𝑦 = 𝑎 → ( ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ - 𝑦 ) = - ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) ↔ ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ - 𝑎 ) = - ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ) ) |
30 |
24 29
|
imbi12d |
⊢ ( 𝑦 = 𝑎 → ( ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ - 𝑦 ) = - ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ - 𝑎 ) = - ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ) ) ) |
31 |
|
znegcl |
⊢ ( 𝑦 ∈ ℤ → - 𝑦 ∈ ℤ ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → - 𝑦 ∈ ℤ ) |
33 |
|
negex |
⊢ - 𝑦 ∈ V |
34 |
|
eleq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 ∈ ℤ ↔ - 𝑦 ∈ ℤ ) ) |
35 |
34
|
anbi2d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ - 𝑦 ∈ ℤ ) ) ) |
36 |
7
|
eleq1d |
⊢ ( 𝑥 = - 𝑦 → ( 𝐸 ∈ ℝ ↔ 𝐺 ∈ ℝ ) ) |
37 |
35 36
|
imbi12d |
⊢ ( 𝑥 = - 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝐸 ∈ ℝ ) ↔ ( ( 𝜑 ∧ - 𝑦 ∈ ℤ ) → 𝐺 ∈ ℝ ) ) ) |
38 |
33 37 2
|
vtocl |
⊢ ( ( 𝜑 ∧ - 𝑦 ∈ ℤ ) → 𝐺 ∈ ℝ ) |
39 |
31 38
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → 𝐺 ∈ ℝ ) |
40 |
18 7 32 39
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ - 𝑦 ) = 𝐺 ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → 𝑦 ∈ ℤ ) |
42 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ℤ ↔ 𝑦 ∈ ℤ ) ) |
43 |
42
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝑦 ∈ ℤ ) ) ) |
44 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐸 ∈ ℝ ↔ 𝐹 ∈ ℝ ) ) |
45 |
43 44
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝐸 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → 𝐹 ∈ ℝ ) ) ) |
46 |
45 2
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → 𝐹 ∈ ℝ ) |
47 |
18 6 41 46
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = 𝐹 ) |
48 |
47
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → - ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = - 𝐹 ) |
49 |
3 40 48
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ - 𝑦 ) = - ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) ) |
50 |
30 49
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ - 𝑎 ) = - ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) ) |
51 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) |
52 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 < 𝑏 |
53 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
54 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) |
55 |
9 53 54
|
nfbr |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) |
56 |
52 55
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑎 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) |
57 |
51 56
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) |
58 |
|
eleq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∈ ℕ0 ↔ 𝑎 ∈ ℕ0 ) ) |
59 |
58
|
3anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ↔ ( 𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ) |
60 |
|
breq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 < 𝑏 ↔ 𝑎 < 𝑏 ) ) |
61 |
14
|
breq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ↔ ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) |
62 |
60 61
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ↔ ( 𝑎 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) ) |
63 |
59 62
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑥 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) ) ) |
64 |
|
eleq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 ∈ ℕ0 ↔ 𝑏 ∈ ℕ0 ) ) |
65 |
64
|
3anbi3d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ↔ ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) ) ) |
66 |
|
breq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑥 < 𝑦 ↔ 𝑥 < 𝑏 ) ) |
67 |
|
fveq2 |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) |
68 |
67
|
breq2d |
⊢ ( 𝑦 = 𝑏 → ( ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) ↔ ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) |
69 |
66 68
|
imbi12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑥 < 𝑦 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) ) ↔ ( 𝑥 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) ) |
70 |
65 69
|
imbi12d |
⊢ ( 𝑦 = 𝑏 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 < 𝑦 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑥 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) ) ) |
71 |
|
nn0z |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ ) |
72 |
71 20
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) = 𝐸 ) |
73 |
72
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) = 𝐸 ) |
74 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) |
75 |
|
nffvmpt1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) |
76 |
75
|
nfeq1 |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = 𝐹 |
77 |
74 76
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = 𝐹 ) |
78 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ℕ0 ↔ 𝑦 ∈ ℕ0 ) ) |
79 |
78
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ↔ ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) ) ) |
80 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) ) |
81 |
80 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) = 𝐸 ↔ ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = 𝐹 ) ) |
82 |
79 81
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) = 𝐸 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = 𝐹 ) ) ) |
83 |
77 82 72
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = 𝐹 ) |
84 |
83
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) = 𝐹 ) |
85 |
73 84
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) ↔ 𝐸 < 𝐹 ) ) |
86 |
1 85
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 < 𝑦 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑦 ) ) ) |
87 |
70 86
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑥 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑥 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) |
88 |
57 63 87
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑎 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝑏 ) ) ) |
89 |
22 50 88
|
monotoddzzfi |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝐴 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝐵 ) ) ) |
90 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
91 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) |
92 |
91
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝐴 ∈ ℤ ) ) ) |
93 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝐸 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
94 |
92 93
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝐸 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ) → 𝐶 ∈ ℝ ) ) ) |
95 |
94 2
|
vtoclg |
⊢ ( 𝐴 ∈ ℤ → ( ( 𝜑 ∧ 𝐴 ∈ ℤ ) → 𝐶 ∈ ℝ ) ) |
96 |
95
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ) → 𝐶 ∈ ℝ ) |
97 |
96
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐶 ∈ ℝ ) |
98 |
18 4 90 97
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝐴 ) = 𝐶 ) |
99 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
100 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ ℤ ↔ 𝐵 ∈ ℤ ) ) |
101 |
100
|
anbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) ↔ ( 𝜑 ∧ 𝐵 ∈ ℤ ) ) ) |
102 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( 𝐸 ∈ ℝ ↔ 𝐷 ∈ ℝ ) ) |
103 |
101 102
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝐸 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝐵 ∈ ℤ ) → 𝐷 ∈ ℝ ) ) ) |
104 |
103 2
|
vtoclg |
⊢ ( 𝐵 ∈ ℤ → ( ( 𝜑 ∧ 𝐵 ∈ ℤ ) → 𝐷 ∈ ℝ ) ) |
105 |
104
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℤ ) → 𝐷 ∈ ℝ ) |
106 |
105
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐷 ∈ ℝ ) |
107 |
18 5 99 106
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝐵 ) = 𝐷 ) |
108 |
98 107
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝐴 ) < ( ( 𝑥 ∈ ℤ ↦ 𝐸 ) ‘ 𝐵 ) ↔ 𝐶 < 𝐷 ) ) |
109 |
89 108
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ 𝐶 < 𝐷 ) ) |