| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monotuz.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐻 ) → 𝐹 < 𝐺 ) |
| 2 |
|
monotuz.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → 𝐶 ∈ ℝ ) |
| 3 |
|
monotuz.3 |
⊢ 𝐻 = ( ℤ≥ ‘ 𝐼 ) |
| 4 |
|
monotuz.4 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → 𝐶 = 𝐺 ) |
| 5 |
|
monotuz.5 |
⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐹 ) |
| 6 |
|
monotuz.6 |
⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) |
| 7 |
|
monotuz.7 |
⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) |
| 8 |
|
csbeq1 |
⊢ ( 𝑎 = 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑏 / 𝑥 ⦌ 𝐶 ) |
| 9 |
|
csbeq1 |
⊢ ( 𝑎 = 𝐴 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 10 |
|
csbeq1 |
⊢ ( 𝑎 = 𝐵 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑥 ⦌ 𝐶 ) |
| 11 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝐼 ) ⊆ ℤ |
| 12 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 13 |
11 12
|
sstri |
⊢ ( ℤ≥ ‘ 𝐼 ) ⊆ ℝ |
| 14 |
3 13
|
eqsstri |
⊢ 𝐻 ⊆ ℝ |
| 15 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) |
| 16 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
| 17 |
16
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ ℝ |
| 18 |
15 17
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ ℝ ) |
| 19 |
|
eleq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ∈ 𝐻 ↔ 𝑎 ∈ 𝐻 ) ) |
| 20 |
19
|
anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) ↔ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ) ) |
| 21 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑥 = 𝑎 → ( 𝐶 ∈ ℝ ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ ℝ ) ) |
| 23 |
20 22
|
imbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → 𝐶 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ ℝ ) ) ) |
| 24 |
18 23 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ ℝ ) |
| 25 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ 𝑎 < 𝑏 ) → ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ) |
| 26 |
25
|
adantlrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑎 < 𝑏 ) → ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ) |
| 27 |
3 11
|
eqsstri |
⊢ 𝐻 ⊆ ℤ |
| 28 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑎 < 𝑏 ) → 𝑎 ∈ 𝐻 ) |
| 29 |
27 28
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑎 < 𝑏 ) → 𝑎 ∈ ℤ ) |
| 30 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑎 < 𝑏 ) → 𝑏 ∈ 𝐻 ) |
| 31 |
27 30
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑎 < 𝑏 ) → 𝑏 ∈ ℤ ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑎 < 𝑏 ) → 𝑎 < 𝑏 ) |
| 33 |
|
csbeq1 |
⊢ ( 𝑐 = ( 𝑎 + 1 ) → ⦋ 𝑐 / 𝑥 ⦌ 𝐶 = ⦋ ( 𝑎 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 34 |
33
|
breq2d |
⊢ ( 𝑐 = ( 𝑎 + 1 ) → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑐 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑎 + 1 ) / 𝑥 ⦌ 𝐶 ) ) |
| 35 |
34
|
imbi2d |
⊢ ( 𝑐 = ( 𝑎 + 1 ) → ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑐 / 𝑥 ⦌ 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑎 + 1 ) / 𝑥 ⦌ 𝐶 ) ) ) |
| 36 |
|
csbeq1 |
⊢ ( 𝑐 = 𝑑 → ⦋ 𝑐 / 𝑥 ⦌ 𝐶 = ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) |
| 37 |
36
|
breq2d |
⊢ ( 𝑐 = 𝑑 → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑐 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) ) |
| 38 |
37
|
imbi2d |
⊢ ( 𝑐 = 𝑑 → ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑐 / 𝑥 ⦌ 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) ) ) |
| 39 |
|
csbeq1 |
⊢ ( 𝑐 = ( 𝑑 + 1 ) → ⦋ 𝑐 / 𝑥 ⦌ 𝐶 = ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 40 |
39
|
breq2d |
⊢ ( 𝑐 = ( 𝑑 + 1 ) → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑐 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑐 = ( 𝑑 + 1 ) → ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑐 / 𝑥 ⦌ 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) ) ) |
| 42 |
|
csbeq1 |
⊢ ( 𝑐 = 𝑏 → ⦋ 𝑐 / 𝑥 ⦌ 𝐶 = ⦋ 𝑏 / 𝑥 ⦌ 𝐶 ) |
| 43 |
42
|
breq2d |
⊢ ( 𝑐 = 𝑏 → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑐 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑏 / 𝑥 ⦌ 𝐶 ) ) |
| 44 |
43
|
imbi2d |
⊢ ( 𝑐 = 𝑏 → ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑐 / 𝑥 ⦌ 𝐶 ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑏 / 𝑥 ⦌ 𝐶 ) ) ) |
| 45 |
|
eleq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ∈ 𝐻 ↔ 𝑎 ∈ 𝐻 ) ) |
| 46 |
45
|
anbi2d |
⊢ ( 𝑦 = 𝑎 → ( ( 𝜑 ∧ 𝑦 ∈ 𝐻 ) ↔ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ) ) |
| 47 |
|
vex |
⊢ 𝑦 ∈ V |
| 48 |
47 5
|
csbie |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐹 |
| 49 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑎 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 50 |
48 49
|
eqtr3id |
⊢ ( 𝑦 = 𝑎 → 𝐹 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
| 51 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
| 52 |
51 4
|
csbie |
⊢ ⦋ ( 𝑦 + 1 ) / 𝑥 ⦌ 𝐶 = 𝐺 |
| 53 |
|
oveq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 + 1 ) = ( 𝑎 + 1 ) ) |
| 54 |
53
|
csbeq1d |
⊢ ( 𝑦 = 𝑎 → ⦋ ( 𝑦 + 1 ) / 𝑥 ⦌ 𝐶 = ⦋ ( 𝑎 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 55 |
52 54
|
eqtr3id |
⊢ ( 𝑦 = 𝑎 → 𝐺 = ⦋ ( 𝑎 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 56 |
50 55
|
breq12d |
⊢ ( 𝑦 = 𝑎 → ( 𝐹 < 𝐺 ↔ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑎 + 1 ) / 𝑥 ⦌ 𝐶 ) ) |
| 57 |
46 56
|
imbi12d |
⊢ ( 𝑦 = 𝑎 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐻 ) → 𝐹 < 𝐺 ) ↔ ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑎 + 1 ) / 𝑥 ⦌ 𝐶 ) ) ) |
| 58 |
57 1
|
vtoclg |
⊢ ( 𝑎 ∈ ℤ → ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑎 + 1 ) / 𝑥 ⦌ 𝐶 ) ) |
| 59 |
24
|
3ad2ant2 |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ∈ ℝ ) |
| 60 |
|
simp2l |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → 𝜑 ) |
| 61 |
|
zre |
⊢ ( 𝑎 ∈ ℤ → 𝑎 ∈ ℝ ) |
| 62 |
61
|
3ad2ant1 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) → 𝑎 ∈ ℝ ) |
| 63 |
|
zre |
⊢ ( 𝑑 ∈ ℤ → 𝑑 ∈ ℝ ) |
| 64 |
63
|
3ad2ant2 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) → 𝑑 ∈ ℝ ) |
| 65 |
|
simp3 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) → 𝑎 < 𝑑 ) |
| 66 |
62 64 65
|
ltled |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) → 𝑎 ≤ 𝑑 ) |
| 67 |
66
|
3ad2ant1 |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → 𝑎 ≤ 𝑑 ) |
| 68 |
|
simp11 |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → 𝑎 ∈ ℤ ) |
| 69 |
|
simp12 |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → 𝑑 ∈ ℤ ) |
| 70 |
|
eluz |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ) → ( 𝑑 ∈ ( ℤ≥ ‘ 𝑎 ) ↔ 𝑎 ≤ 𝑑 ) ) |
| 71 |
68 69 70
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ( 𝑑 ∈ ( ℤ≥ ‘ 𝑎 ) ↔ 𝑎 ≤ 𝑑 ) ) |
| 72 |
67 71
|
mpbird |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → 𝑑 ∈ ( ℤ≥ ‘ 𝑎 ) ) |
| 73 |
|
simp2r |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → 𝑎 ∈ 𝐻 ) |
| 74 |
73 3
|
eleqtrdi |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → 𝑎 ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 75 |
|
uztrn |
⊢ ( ( 𝑑 ∈ ( ℤ≥ ‘ 𝑎 ) ∧ 𝑎 ∈ ( ℤ≥ ‘ 𝐼 ) ) → 𝑑 ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 76 |
72 74 75
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → 𝑑 ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 77 |
76 3
|
eleqtrrdi |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → 𝑑 ∈ 𝐻 ) |
| 78 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑑 ∈ 𝐻 ) |
| 79 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑑 / 𝑥 ⦌ 𝐶 |
| 80 |
79
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ∈ ℝ |
| 81 |
78 80
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑑 ∈ 𝐻 ) → ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ∈ ℝ ) |
| 82 |
|
eleq1 |
⊢ ( 𝑥 = 𝑑 → ( 𝑥 ∈ 𝐻 ↔ 𝑑 ∈ 𝐻 ) ) |
| 83 |
82
|
anbi2d |
⊢ ( 𝑥 = 𝑑 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) ↔ ( 𝜑 ∧ 𝑑 ∈ 𝐻 ) ) ) |
| 84 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑑 → 𝐶 = ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) |
| 85 |
84
|
eleq1d |
⊢ ( 𝑥 = 𝑑 → ( 𝐶 ∈ ℝ ↔ ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ∈ ℝ ) ) |
| 86 |
83 85
|
imbi12d |
⊢ ( 𝑥 = 𝑑 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → 𝐶 ∈ ℝ ) ↔ ( ( 𝜑 ∧ 𝑑 ∈ 𝐻 ) → ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ∈ ℝ ) ) ) |
| 87 |
81 86 2
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐻 ) → ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ∈ ℝ ) |
| 88 |
60 77 87
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ∈ ℝ ) |
| 89 |
|
peano2uz |
⊢ ( 𝑑 ∈ ( ℤ≥ ‘ 𝐼 ) → ( 𝑑 + 1 ) ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 90 |
76 89
|
syl |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ( 𝑑 + 1 ) ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 91 |
90 3
|
eleqtrrdi |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ( 𝑑 + 1 ) ∈ 𝐻 ) |
| 92 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑑 + 1 ) ∈ 𝐻 ) |
| 93 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 |
| 94 |
93
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ∈ ℝ |
| 95 |
92 94
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ ( 𝑑 + 1 ) ∈ 𝐻 ) → ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ∈ ℝ ) |
| 96 |
|
ovex |
⊢ ( 𝑑 + 1 ) ∈ V |
| 97 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( 𝑥 ∈ 𝐻 ↔ ( 𝑑 + 1 ) ∈ 𝐻 ) ) |
| 98 |
97
|
anbi2d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) ↔ ( 𝜑 ∧ ( 𝑑 + 1 ) ∈ 𝐻 ) ) ) |
| 99 |
|
csbeq1a |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → 𝐶 = ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 100 |
99
|
eleq1d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( 𝐶 ∈ ℝ ↔ ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ∈ ℝ ) ) |
| 101 |
98 100
|
imbi12d |
⊢ ( 𝑥 = ( 𝑑 + 1 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐻 ) → 𝐶 ∈ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑑 + 1 ) ∈ 𝐻 ) → ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ∈ ℝ ) ) ) |
| 102 |
95 96 101 2
|
vtoclf |
⊢ ( ( 𝜑 ∧ ( 𝑑 + 1 ) ∈ 𝐻 ) → ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ∈ ℝ ) |
| 103 |
60 91 102
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ∈ ℝ ) |
| 104 |
|
simp3 |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) |
| 105 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝜑 ∧ 𝑑 ∈ 𝐻 ) → ⦋ 𝑑 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 106 |
|
eleq1 |
⊢ ( 𝑦 = 𝑑 → ( 𝑦 ∈ 𝐻 ↔ 𝑑 ∈ 𝐻 ) ) |
| 107 |
106
|
anbi2d |
⊢ ( 𝑦 = 𝑑 → ( ( 𝜑 ∧ 𝑦 ∈ 𝐻 ) ↔ ( 𝜑 ∧ 𝑑 ∈ 𝐻 ) ) ) |
| 108 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑑 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) |
| 109 |
48 108
|
eqtr3id |
⊢ ( 𝑦 = 𝑑 → 𝐹 = ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) |
| 110 |
|
oveq1 |
⊢ ( 𝑦 = 𝑑 → ( 𝑦 + 1 ) = ( 𝑑 + 1 ) ) |
| 111 |
110
|
csbeq1d |
⊢ ( 𝑦 = 𝑑 → ⦋ ( 𝑦 + 1 ) / 𝑥 ⦌ 𝐶 = ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 112 |
52 111
|
eqtr3id |
⊢ ( 𝑦 = 𝑑 → 𝐺 = ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 113 |
109 112
|
breq12d |
⊢ ( 𝑦 = 𝑑 → ( 𝐹 < 𝐺 ↔ ⦋ 𝑑 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) ) |
| 114 |
107 113
|
imbi12d |
⊢ ( 𝑦 = 𝑑 → ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐻 ) → 𝐹 < 𝐺 ) ↔ ( ( 𝜑 ∧ 𝑑 ∈ 𝐻 ) → ⦋ 𝑑 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) ) ) |
| 115 |
105 114 1
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ 𝐻 ) → ⦋ 𝑑 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 116 |
60 77 115
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ⦋ 𝑑 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 117 |
59 88 103 104 116
|
lttrd |
⊢ ( ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) ∧ ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) ∧ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) |
| 118 |
117
|
3exp |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) → ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ( ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) ) ) |
| 119 |
118
|
a2d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑑 ∈ ℤ ∧ 𝑎 < 𝑑 ) → ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑑 / 𝑥 ⦌ 𝐶 ) → ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ ( 𝑑 + 1 ) / 𝑥 ⦌ 𝐶 ) ) ) |
| 120 |
35 38 41 44 58 119
|
uzind2 |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑎 < 𝑏 ) → ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑏 / 𝑥 ⦌ 𝐶 ) ) |
| 121 |
29 31 32 120
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑎 < 𝑏 ) → ( ( 𝜑 ∧ 𝑎 ∈ 𝐻 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑏 / 𝑥 ⦌ 𝐶 ) ) |
| 122 |
26 121
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) ∧ 𝑎 < 𝑏 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑏 / 𝑥 ⦌ 𝐶 ) |
| 123 |
122
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐻 ∧ 𝑏 ∈ 𝐻 ) ) → ( 𝑎 < 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 < ⦋ 𝑏 / 𝑥 ⦌ 𝐶 ) ) |
| 124 |
8 9 10 14 24 123
|
ltord1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ) → ( 𝐴 < 𝐵 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 < ⦋ 𝐵 / 𝑥 ⦌ 𝐶 ) ) |
| 125 |
|
nfcvd |
⊢ ( 𝐴 ∈ 𝐻 → Ⅎ 𝑥 𝐷 ) |
| 126 |
125 6
|
csbiegf |
⊢ ( 𝐴 ∈ 𝐻 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| 127 |
|
nfcvd |
⊢ ( 𝐵 ∈ 𝐻 → Ⅎ 𝑥 𝐸 ) |
| 128 |
127 7
|
csbiegf |
⊢ ( 𝐵 ∈ 𝐻 → ⦋ 𝐵 / 𝑥 ⦌ 𝐶 = 𝐸 ) |
| 129 |
126 128
|
breqan12d |
⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 < ⦋ 𝐵 / 𝑥 ⦌ 𝐶 ↔ 𝐷 < 𝐸 ) ) |
| 130 |
129
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ) → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 < ⦋ 𝐵 / 𝑥 ⦌ 𝐶 ↔ 𝐷 < 𝐸 ) ) |
| 131 |
124 130
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) ) → ( 𝐴 < 𝐵 ↔ 𝐷 < 𝐸 ) ) |