Metamath Proof Explorer


Theorem monpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses monpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
monpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
monpropd.c ( 𝜑𝐶 ∈ Cat )
monpropd.d ( 𝜑𝐷 ∈ Cat )
Assertion monpropd ( 𝜑 → ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 monpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
2 monpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
3 monpropd.c ( 𝜑𝐶 ∈ Cat )
4 monpropd.d ( 𝜑𝐷 ∈ Cat )
5 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
6 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
7 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
8 1 ad2antrr ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
9 8 ad2antrr ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
10 simpr ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → 𝑐 ∈ ( Base ‘ 𝐶 ) )
11 simp-4r ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) )
12 5 6 7 9 10 11 homfeqval ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) )
13 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
14 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
15 1 ad5antr ( ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
16 2 ad5antr ( ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
17 simplr ( ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑐 ∈ ( Base ‘ 𝐶 ) )
18 simp-5r ( ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) )
19 simp-4r ( ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) )
20 simpr ( ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) )
21 simpllr ( ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) )
22 5 6 13 14 15 16 17 18 19 20 21 comfeqval ( ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) = ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) )
23 12 22 mpteq12dva ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) )
24 23 cnveqd ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) )
25 24 funeqd ( ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) ↔ Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) )
26 25 ralbidva ( ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) ↔ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) )
27 26 rabbidva ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } )
28 simplr ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) )
29 simpr ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) )
30 5 6 7 8 28 29 homfeqval ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) = ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) )
31 1 homfeqbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
32 31 ad2antrr ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
33 32 raleqdv ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ↔ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) )
34 30 33 rabeqbidv ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } )
35 27 34 eqtrd ( ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } )
36 35 3impa ( ( 𝜑𝑎 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } )
37 36 mpoeq3dva ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) )
38 mpoeq12 ( ( ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ∧ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) )
39 31 31 38 syl2anc ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) )
40 37 39 eqtrd ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) )
41 eqid ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐶 )
42 5 6 13 41 3 monfval ( 𝜑 → ( Mono ‘ 𝐶 ) = ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) )
43 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
44 eqid ( Mono ‘ 𝐷 ) = ( Mono ‘ 𝐷 )
45 43 7 14 44 4 monfval ( 𝜑 → ( Mono ‘ 𝐷 ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( ⟨ 𝑐 , 𝑎 ⟩ ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) )
46 40 42 45 3eqtr4d ( 𝜑 → ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐷 ) )