Step |
Hyp |
Ref |
Expression |
1 |
|
monpropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
2 |
|
monpropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
3 |
|
monpropd.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
4 |
|
monpropd.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
8 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
10 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → 𝑐 ∈ ( Base ‘ 𝐶 ) ) |
11 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) ) |
12 |
5 6 7 9 10 11
|
homfeqval |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ) |
13 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
14 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
15 |
1
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
16 |
2
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
17 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑐 ∈ ( Base ‘ 𝐶 ) ) |
18 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) ) |
19 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) ) |
20 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) |
21 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) |
22 |
5 6 13 14 15 16 17 18 19 20 21
|
comfeqval |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ) → ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) = ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) |
23 |
12 22
|
mpteq12dva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) |
24 |
23
|
cnveqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) = ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) |
25 |
24
|
funeqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) ∧ 𝑐 ∈ ( Base ‘ 𝐶 ) ) → ( Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) ↔ Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) ) |
26 |
25
|
ralbidva |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ) → ( ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) ↔ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) ) |
27 |
26
|
rabbidva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) |
28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → 𝑎 ∈ ( Base ‘ 𝐶 ) ) |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → 𝑏 ∈ ( Base ‘ 𝐶 ) ) |
30 |
5 6 7 8 28 29
|
homfeqval |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) = ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ) |
31 |
1
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
32 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
33 |
32
|
raleqdv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ↔ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) ) |
34 |
30 33
|
rabeqbidv |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) |
35 |
27 34
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) |
36 |
35
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝐶 ) ∧ 𝑏 ∈ ( Base ‘ 𝐶 ) ) → { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } = { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) |
37 |
36
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) |
38 |
|
mpoeq12 |
⊢ ( ( ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ∧ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) |
39 |
31 31 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) |
40 |
37 39
|
eqtrd |
⊢ ( 𝜑 → ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) |
41 |
|
eqid |
⊢ ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐶 ) |
42 |
5 6 13 41 3
|
monfval |
⊢ ( 𝜑 → ( Mono ‘ 𝐶 ) = ( 𝑎 ∈ ( Base ‘ 𝐶 ) , 𝑏 ∈ ( Base ‘ 𝐶 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐶 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐶 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
44 |
|
eqid |
⊢ ( Mono ‘ 𝐷 ) = ( Mono ‘ 𝐷 ) |
45 |
43 7 14 44 4
|
monfval |
⊢ ( 𝜑 → ( Mono ‘ 𝐷 ) = ( 𝑎 ∈ ( Base ‘ 𝐷 ) , 𝑏 ∈ ( Base ‘ 𝐷 ) ↦ { 𝑓 ∈ ( 𝑎 ( Hom ‘ 𝐷 ) 𝑏 ) ∣ ∀ 𝑐 ∈ ( Base ‘ 𝐷 ) Fun ◡ ( 𝑔 ∈ ( 𝑐 ( Hom ‘ 𝐷 ) 𝑎 ) ↦ ( 𝑓 ( 〈 𝑐 , 𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) |
46 |
40 42 45
|
3eqtr4d |
⊢ ( 𝜑 → ( Mono ‘ 𝐶 ) = ( Mono ‘ 𝐷 ) ) |