| Step | Hyp | Ref | Expression | 
						
							| 1 |  | monpropd.3 | ⊢ ( 𝜑  →  ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐷 ) ) | 
						
							| 2 |  | monpropd.4 | ⊢ ( 𝜑  →  ( compf ‘ 𝐶 )  =  ( compf ‘ 𝐷 ) ) | 
						
							| 3 |  | monpropd.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 4 |  | monpropd.d | ⊢ ( 𝜑  →  𝐷  ∈  Cat ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 6 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 7 |  | eqid | ⊢ ( Hom  ‘ 𝐷 )  =  ( Hom  ‘ 𝐷 ) | 
						
							| 8 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐷 ) ) | 
						
							| 9 | 8 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  →  ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐷 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  →  𝑐  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 11 |  | simp-4r | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  →  𝑎  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 12 | 5 6 7 9 10 11 | homfeqval | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  =  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 ) ) | 
						
							| 13 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 14 |  | eqid | ⊢ ( comp ‘ 𝐷 )  =  ( comp ‘ 𝐷 ) | 
						
							| 15 | 1 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ( Homf  ‘ 𝐶 )  =  ( Homf  ‘ 𝐷 ) ) | 
						
							| 16 | 2 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ( compf ‘ 𝐶 )  =  ( compf ‘ 𝐷 ) ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  𝑐  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 18 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  𝑎  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 19 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  𝑏  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 ) ) | 
						
							| 21 |  | simpllr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) ) | 
						
							| 22 | 5 6 13 14 15 16 17 18 19 20 21 | comfeqval | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 ) )  →  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 )  =  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) | 
						
							| 23 | 12 22 | mpteq12dva | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) )  =  ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) | 
						
							| 24 | 23 | cnveqd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  →  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) )  =  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) | 
						
							| 25 | 24 | funeqd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  ∧  𝑐  ∈  ( Base ‘ 𝐶 ) )  →  ( Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) )  ↔  Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) ) | 
						
							| 26 | 25 | ralbidva | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 ) )  →  ( ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) )  ↔  ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) ) | 
						
							| 27 | 26 | rabbidva | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) }  =  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  𝑎  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 29 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  𝑏  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 30 | 5 6 7 8 28 29 | homfeqval | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 )  =  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 ) ) | 
						
							| 31 | 1 | homfeqbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐷 ) ) | 
						
							| 32 | 31 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐷 ) ) | 
						
							| 33 | 32 | raleqdv | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  ( ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) )  ↔  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) ) ) | 
						
							| 34 | 30 33 | rabeqbidv | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) }  =  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) | 
						
							| 35 | 27 34 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) }  =  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) | 
						
							| 36 | 35 | 3impa | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝐶 )  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) }  =  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) | 
						
							| 37 | 36 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( Base ‘ 𝐶 ) ,  𝑏  ∈  ( Base ‘ 𝐶 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } )  =  ( 𝑎  ∈  ( Base ‘ 𝐶 ) ,  𝑏  ∈  ( Base ‘ 𝐶 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) | 
						
							| 38 |  | mpoeq12 | ⊢ ( ( ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐷 )  ∧  ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐷 ) )  →  ( 𝑎  ∈  ( Base ‘ 𝐶 ) ,  𝑏  ∈  ( Base ‘ 𝐶 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } )  =  ( 𝑎  ∈  ( Base ‘ 𝐷 ) ,  𝑏  ∈  ( Base ‘ 𝐷 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) | 
						
							| 39 | 31 31 38 | syl2anc | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( Base ‘ 𝐶 ) ,  𝑏  ∈  ( Base ‘ 𝐶 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } )  =  ( 𝑎  ∈  ( Base ‘ 𝐷 ) ,  𝑏  ∈  ( Base ‘ 𝐷 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) | 
						
							| 40 | 37 39 | eqtrd | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( Base ‘ 𝐶 ) ,  𝑏  ∈  ( Base ‘ 𝐶 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } )  =  ( 𝑎  ∈  ( Base ‘ 𝐷 ) ,  𝑏  ∈  ( Base ‘ 𝐷 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) | 
						
							| 41 |  | eqid | ⊢ ( Mono ‘ 𝐶 )  =  ( Mono ‘ 𝐶 ) | 
						
							| 42 | 5 6 13 41 3 | monfval | ⊢ ( 𝜑  →  ( Mono ‘ 𝐶 )  =  ( 𝑎  ∈  ( Base ‘ 𝐶 ) ,  𝑏  ∈  ( Base ‘ 𝐶 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐶 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐶 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐶 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐶 ) 𝑏 ) 𝑔 ) ) } ) ) | 
						
							| 43 |  | eqid | ⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 ) | 
						
							| 44 |  | eqid | ⊢ ( Mono ‘ 𝐷 )  =  ( Mono ‘ 𝐷 ) | 
						
							| 45 | 43 7 14 44 4 | monfval | ⊢ ( 𝜑  →  ( Mono ‘ 𝐷 )  =  ( 𝑎  ∈  ( Base ‘ 𝐷 ) ,  𝑏  ∈  ( Base ‘ 𝐷 )  ↦  { 𝑓  ∈  ( 𝑎 ( Hom  ‘ 𝐷 ) 𝑏 )  ∣  ∀ 𝑐  ∈  ( Base ‘ 𝐷 ) Fun  ◡ ( 𝑔  ∈  ( 𝑐 ( Hom  ‘ 𝐷 ) 𝑎 )  ↦  ( 𝑓 ( 〈 𝑐 ,  𝑎 〉 ( comp ‘ 𝐷 ) 𝑏 ) 𝑔 ) ) } ) ) | 
						
							| 46 | 40 42 45 | 3eqtr4d | ⊢ ( 𝜑  →  ( Mono ‘ 𝐶 )  =  ( Mono ‘ 𝐷 ) ) |