Step |
Hyp |
Ref |
Expression |
1 |
|
sectmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
sectmon.m |
⊢ 𝑀 = ( Mono ‘ 𝐶 ) |
3 |
|
sectmon.s |
⊢ 𝑆 = ( Sect ‘ 𝐶 ) |
4 |
|
sectmon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
sectmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
sectmon.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
monsect.n |
⊢ 𝑁 = ( Inv ‘ 𝐶 ) |
8 |
|
monsect.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) |
9 |
|
monsect.2 |
⊢ ( 𝜑 → 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) |
10 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
11 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
12 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
13 |
1 10 11 12 3 4 6 5
|
issect |
⊢ ( 𝜑 → ( 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) ) |
14 |
9 13
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
15 |
14
|
simp3d |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) |
17 |
14
|
simp2d |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
18 |
14
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
19 |
1 10 11 4 5 6 5 17 18 6 17
|
catass |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
20 |
1 10 12 4 5 11 6 17
|
catlid |
⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = 𝐹 ) |
21 |
1 10 12 4 5 11 6 17
|
catrid |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐹 ) |
22 |
20 21
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
23 |
16 19 22
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
24 |
1 10 11 4 5 6 5 17 18
|
catcocl |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
25 |
1 10 12 4 5
|
catidcl |
⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
26 |
1 10 11 2 4 5 6 5 8 24 25
|
moni |
⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
27 |
23 26
|
mpbid |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
28 |
1 10 11 12 3 4 5 6 17 18
|
issect2 |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
29 |
27 28
|
mpbird |
⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) |
30 |
1 7 4 5 6 3
|
isinv |
⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |
31 |
29 9 30
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) |