Metamath Proof Explorer


Theorem moop2

Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis moop2.1 𝐵 ∈ V
Assertion moop2 ∃* 𝑥 𝐴 = ⟨ 𝐵 , 𝑥

Proof

Step Hyp Ref Expression
1 moop2.1 𝐵 ∈ V
2 eqtr2 ( ( 𝐴 = ⟨ 𝐵 , 𝑥 ⟩ ∧ 𝐴 = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦 ⟩ ) → ⟨ 𝐵 , 𝑥 ⟩ = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦 ⟩ )
3 vex 𝑥 ∈ V
4 1 3 opth ( ⟨ 𝐵 , 𝑥 ⟩ = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦 ⟩ ↔ ( 𝐵 = 𝑦 / 𝑥 𝐵𝑥 = 𝑦 ) )
5 4 simprbi ( ⟨ 𝐵 , 𝑥 ⟩ = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦 ⟩ → 𝑥 = 𝑦 )
6 2 5 syl ( ( 𝐴 = ⟨ 𝐵 , 𝑥 ⟩ ∧ 𝐴 = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦 ⟩ ) → 𝑥 = 𝑦 )
7 6 gen2 𝑥𝑦 ( ( 𝐴 = ⟨ 𝐵 , 𝑥 ⟩ ∧ 𝐴 = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦 ⟩ ) → 𝑥 = 𝑦 )
8 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
9 nfcv 𝑥 𝑦
10 8 9 nfop 𝑥 𝑦 / 𝑥 𝐵 , 𝑦
11 10 nfeq2 𝑥 𝐴 = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦
12 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
13 id ( 𝑥 = 𝑦𝑥 = 𝑦 )
14 12 13 opeq12d ( 𝑥 = 𝑦 → ⟨ 𝐵 , 𝑥 ⟩ = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦 ⟩ )
15 14 eqeq2d ( 𝑥 = 𝑦 → ( 𝐴 = ⟨ 𝐵 , 𝑥 ⟩ ↔ 𝐴 = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦 ⟩ ) )
16 11 15 mo4f ( ∃* 𝑥 𝐴 = ⟨ 𝐵 , 𝑥 ⟩ ↔ ∀ 𝑥𝑦 ( ( 𝐴 = ⟨ 𝐵 , 𝑥 ⟩ ∧ 𝐴 = ⟨ 𝑦 / 𝑥 𝐵 , 𝑦 ⟩ ) → 𝑥 = 𝑦 ) )
17 7 16 mpbir ∃* 𝑥 𝐴 = ⟨ 𝐵 , 𝑥