Metamath Proof Explorer
		
		
		
		Description:  "At most one" exports disjunction to conjunction.  (Contributed by NM, 5-Apr-2004)  (Proof shortened by Andrew Salmon, 9-Jul-2011)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | mooran2 | ⊢  ( ∃* 𝑥 ( 𝜑  ∨  𝜓 )  →  ( ∃* 𝑥 𝜑  ∧  ∃* 𝑥 𝜓 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | moor | ⊢ ( ∃* 𝑥 ( 𝜑  ∨  𝜓 )  →  ∃* 𝑥 𝜑 ) | 
						
							| 2 |  | olc | ⊢ ( 𝜓  →  ( 𝜑  ∨  𝜓 ) ) | 
						
							| 3 | 2 | moimi | ⊢ ( ∃* 𝑥 ( 𝜑  ∨  𝜓 )  →  ∃* 𝑥 𝜓 ) | 
						
							| 4 | 1 3 | jca | ⊢ ( ∃* 𝑥 ( 𝜑  ∨  𝜓 )  →  ( ∃* 𝑥 𝜑  ∧  ∃* 𝑥 𝜓 ) ) |