Step |
Hyp |
Ref |
Expression |
1 |
|
df-mo |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
2 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) |
3 |
|
pm3.45 |
⊢ ( ( 𝜑 → 𝑥 = 𝑦 ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑦 ∧ 𝜓 ) ) ) |
4 |
3
|
aleximi |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜓 ) ) ) |
5 |
|
sbalex |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ) |
6 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) → ( 𝑥 = 𝑦 → 𝜓 ) ) |
7 |
5 6
|
sylbi |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜓 ) → ( 𝑥 = 𝑦 → 𝜓 ) ) |
8 |
4 7
|
syl6 |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑦 → 𝜓 ) ) ) |
9 |
2 8
|
syl5d |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
10 |
9
|
exlimiv |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
11 |
1 10
|
sylbi |
⊢ ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
12 |
11
|
imp |
⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |