| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfmo1 | ⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 | 
						
							| 2 |  | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝜑  ∧  𝜓 ) | 
						
							| 3 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) ) | 
						
							| 4 |  | mopick | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 5 | 4 | ancld | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  →  ( 𝜑  →  ( 𝜑  ∧  𝜓 ) ) ) | 
						
							| 6 | 5 | anim1d | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  →  ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 ) ) ) | 
						
							| 7 |  | df-3an | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 ) ) | 
						
							| 8 | 6 7 | imbitrrdi | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  →  ( ( 𝜑  ∧  𝜒 )  →  ( 𝜑  ∧  𝜓  ∧  𝜒 ) ) ) | 
						
							| 9 | 3 8 | eximd | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝜓 ) )  →  ( ∃ 𝑥 ( 𝜑  ∧  𝜒 )  →  ∃ 𝑥 ( 𝜑  ∧  𝜓  ∧  𝜒 ) ) ) | 
						
							| 10 | 9 | 3impia | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑥 ( 𝜑  ∧  𝜒 ) )  →  ∃ 𝑥 ( 𝜑  ∧  𝜓  ∧  𝜒 ) ) |