Step |
Hyp |
Ref |
Expression |
1 |
|
exancom |
⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ) |
2 |
|
moeu2 |
⊢ ( ∃* 𝑥 𝜓 ↔ ( ¬ ∃ 𝑥 𝜓 ∨ ∃! 𝑥 𝜓 ) ) |
3 |
|
19.8a |
⊢ ( 𝜓 → ∃ 𝑥 𝜓 ) |
4 |
3
|
con3i |
⊢ ( ¬ ∃ 𝑥 𝜓 → ¬ 𝜓 ) |
5 |
|
pm2.21 |
⊢ ( ¬ 𝜓 → ( 𝜓 → 𝜑 ) ) |
6 |
4 5
|
syl |
⊢ ( ¬ ∃ 𝑥 𝜓 → ( 𝜓 → 𝜑 ) ) |
7 |
6
|
a1d |
⊢ ( ¬ ∃ 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) |
8 |
|
eupickbi |
⊢ ( ∃! 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝜓 → 𝜑 ) ) ) |
9 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜑 ) ) |
10 |
8 9
|
biimtrdi |
⊢ ( ∃! 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) |
11 |
7 10
|
jaoi |
⊢ ( ( ¬ ∃ 𝑥 𝜓 ∨ ∃! 𝑥 𝜓 ) → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) |
12 |
2 11
|
sylbi |
⊢ ( ∃* 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) → ( 𝜓 → 𝜑 ) ) ) |
13 |
1 12
|
biimtrid |
⊢ ( ∃* 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜓 → 𝜑 ) ) ) |
14 |
13
|
imp |
⊢ ( ( ∃* 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜓 → 𝜑 ) ) |