Metamath Proof Explorer


Theorem mopickr

Description: "At most one" picks a variable value, eliminating an existential quantifier. The proof begins with references *2.21 ( pm2.21 ) and *14.26 ( eupickbi ) from WhiteheadRussell p. 104 and p. 183. (Contributed by Peter Mazsa, 18-Nov-2024) (Proof modification is discouraged.)

Ref Expression
Assertion mopickr ( ( ∃* 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 exancom ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜓𝜑 ) )
2 moeu2 ( ∃* 𝑥 𝜓 ↔ ( ¬ ∃ 𝑥 𝜓 ∨ ∃! 𝑥 𝜓 ) )
3 19.8a ( 𝜓 → ∃ 𝑥 𝜓 )
4 3 con3i ( ¬ ∃ 𝑥 𝜓 → ¬ 𝜓 )
5 pm2.21 ( ¬ 𝜓 → ( 𝜓𝜑 ) )
6 4 5 syl ( ¬ ∃ 𝑥 𝜓 → ( 𝜓𝜑 ) )
7 6 a1d ( ¬ ∃ 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓𝜑 ) → ( 𝜓𝜑 ) ) )
8 eupickbi ( ∃! 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓𝜑 ) ↔ ∀ 𝑥 ( 𝜓𝜑 ) ) )
9 sp ( ∀ 𝑥 ( 𝜓𝜑 ) → ( 𝜓𝜑 ) )
10 8 9 biimtrdi ( ∃! 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓𝜑 ) → ( 𝜓𝜑 ) ) )
11 7 10 jaoi ( ( ¬ ∃ 𝑥 𝜓 ∨ ∃! 𝑥 𝜓 ) → ( ∃ 𝑥 ( 𝜓𝜑 ) → ( 𝜓𝜑 ) ) )
12 2 11 sylbi ( ∃* 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜓𝜑 ) → ( 𝜓𝜑 ) ) )
13 1 12 biimtrid ( ∃* 𝑥 𝜓 → ( ∃ 𝑥 ( 𝜑𝜓 ) → ( 𝜓𝜑 ) ) )
14 13 imp ( ( ∃* 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜑𝜓 ) ) → ( 𝜓𝜑 ) )