Metamath Proof Explorer


Theorem mopn0

Description: The empty set is an open set of a metric space. Part of Theorem T1 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006)

Ref Expression
Hypothesis mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion mopn0 ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∅ ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
3 0opn ( 𝐽 ∈ Top → ∅ ∈ 𝐽 )
4 2 3 syl ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∅ ∈ 𝐽 )