Metamath Proof Explorer


Theorem mopnfss

Description: The family of open sets of a metric space is a collection of subsets of the base set. (Contributed by NM, 3-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion mopnfss ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ⊆ 𝒫 𝑋 )

Proof

Step Hyp Ref Expression
1 mopnval.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 pwuni 𝐽 ⊆ 𝒫 𝐽
3 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
4 3 pweqd ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝒫 𝑋 = 𝒫 𝐽 )
5 2 4 sseqtrrid ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ⊆ 𝒫 𝑋 )