Step |
Hyp |
Ref |
Expression |
1 |
|
mopni.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
1
|
elmopn |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( 𝐴 ⊆ 𝑋 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) ) |
3 |
2
|
simplbda |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |
4 |
|
eleq1 |
⊢ ( 𝑦 = 𝑃 → ( 𝑦 ∈ 𝑥 ↔ 𝑃 ∈ 𝑥 ) ) |
5 |
4
|
anbi1d |
⊢ ( 𝑦 = 𝑃 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑦 = 𝑃 → ( ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
7 |
6
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑃 ∈ 𝐴 → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
8 |
3 7
|
syl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → ( 𝑃 ∈ 𝐴 → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
9 |
8
|
3impia |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |