Metamath Proof Explorer


Theorem mopni

Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion mopni ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃𝑥𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 elmopn ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴𝐽 ↔ ( 𝐴𝑋 ∧ ∀ 𝑦𝐴𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦𝑥𝑥𝐴 ) ) ) )
3 2 simplbda ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽 ) → ∀ 𝑦𝐴𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦𝑥𝑥𝐴 ) )
4 eleq1 ( 𝑦 = 𝑃 → ( 𝑦𝑥𝑃𝑥 ) )
5 4 anbi1d ( 𝑦 = 𝑃 → ( ( 𝑦𝑥𝑥𝐴 ) ↔ ( 𝑃𝑥𝑥𝐴 ) ) )
6 5 rexbidv ( 𝑦 = 𝑃 → ( ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦𝑥𝑥𝐴 ) ↔ ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃𝑥𝑥𝐴 ) ) )
7 6 rspccv ( ∀ 𝑦𝐴𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑦𝑥𝑥𝐴 ) → ( 𝑃𝐴 → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃𝑥𝑥𝐴 ) ) )
8 3 7 syl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽 ) → ( 𝑃𝐴 → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃𝑥𝑥𝐴 ) ) )
9 8 3impia ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃𝑥𝑥𝐴 ) )