| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mopni.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
1
|
mopni |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ) |
| 3 |
1
|
mopnss |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝑋 ) |
| 4 |
3
|
sselda |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝑋 ) |
| 5 |
|
blssex |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |
| 6 |
5
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |
| 7 |
4 6
|
syldan |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) ∧ 𝑃 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |
| 8 |
7
|
3impa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) |
| 9 |
2 8
|
mpbid |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) |