| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mopni.1 | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 | 1 | mopni2 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  →  ∃ 𝑦  ∈  ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  ⊆  𝐴 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  ∧  𝑅  ∈  ℝ+ )  →  ∃ 𝑦  ∈  ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  ⊆  𝐴 ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 5 | 1 | mopnss | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽 )  →  𝐴  ⊆  𝑋 ) | 
						
							| 6 | 5 | sselda | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽 )  ∧  𝑃  ∈  𝐴 )  →  𝑃  ∈  𝑋 ) | 
						
							| 7 | 6 | 3impa | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  →  𝑃  ∈  𝑋 ) | 
						
							| 8 | 4 7 | jca | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  →  ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 ) ) | 
						
							| 9 |  | ssblex | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  ∧  ( 𝑅  ∈  ℝ+  ∧  𝑦  ∈  ℝ+ ) )  →  ∃ 𝑥  ∈  ℝ+ ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  ∧  ( 𝑅  ∈  ℝ+  ∧  𝑦  ∈  ℝ+ ) )  →  ∃ 𝑥  ∈  ℝ+ ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) ) | 
						
							| 11 | 10 | anassrs | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℝ+ )  →  ∃ 𝑥  ∈  ℝ+ ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) ) | 
						
							| 12 |  | sstr | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  ⊆  𝐴 )  →  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  𝐴 ) | 
						
							| 13 | 12 | expcom | ⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  ⊆  𝐴  →  ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  →  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  𝐴 ) ) | 
						
							| 14 | 13 | anim2d | ⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  ⊆  𝐴  →  ( ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) )  →  ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  𝐴 ) ) ) | 
						
							| 15 | 14 | reximdv | ⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  ⊆  𝐴  →  ( ∃ 𝑥  ∈  ℝ+ ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) )  →  ∃ 𝑥  ∈  ℝ+ ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  𝐴 ) ) ) | 
						
							| 16 | 11 15 | syl5com | ⊢ ( ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  ∧  𝑅  ∈  ℝ+ )  ∧  𝑦  ∈  ℝ+ )  →  ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  ⊆  𝐴  →  ∃ 𝑥  ∈  ℝ+ ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  𝐴 ) ) ) | 
						
							| 17 | 16 | rexlimdva | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  ∧  𝑅  ∈  ℝ+ )  →  ( ∃ 𝑦  ∈  ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 )  ⊆  𝐴  →  ∃ 𝑥  ∈  ℝ+ ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  𝐴 ) ) ) | 
						
							| 18 | 3 17 | mpd | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝐽  ∧  𝑃  ∈  𝐴 )  ∧  𝑅  ∈  ℝ+ )  →  ∃ 𝑥  ∈  ℝ+ ( 𝑥  <  𝑅  ∧  ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 )  ⊆  𝐴 ) ) |