Metamath Proof Explorer


Theorem mopni3

Description: An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion mopni3 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 mopni2 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 )
3 2 adantr ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 )
4 simp1 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
5 1 mopnss ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝐴𝑋 )
6 5 sselda ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽 ) ∧ 𝑃𝐴 ) → 𝑃𝑋 )
7 6 3impa ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) → 𝑃𝑋 )
8 4 7 jca ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) )
9 ssblex ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ ( 𝑅 ∈ ℝ+𝑦 ∈ ℝ+ ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) )
10 8 9 sylan ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) ∧ ( 𝑅 ∈ ℝ+𝑦 ∈ ℝ+ ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) )
11 10 anassrs ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) )
12 sstr ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 )
13 12 expcom ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) )
14 13 anim2d ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ( ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) → ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) )
15 14 reximdv ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ( ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) )
16 11 15 syl5com ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) )
17 16 rexlimdva ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) ∧ 𝑅 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑦 ) ⊆ 𝐴 → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) ) )
18 3 17 mpd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝑃𝐴 ) ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑥 ∈ ℝ+ ( 𝑥 < 𝑅 ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝐴 ) )