Metamath Proof Explorer


Theorem mopnin

Description: The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion mopnin ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝐵𝐽 ) → ( 𝐴𝐵 ) ∈ 𝐽 )

Proof

Step Hyp Ref Expression
1 mopni.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
3 inopn ( ( 𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽 ) → ( 𝐴𝐵 ) ∈ 𝐽 )
4 2 3 syl3an1 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽𝐵𝐽 ) → ( 𝐴𝐵 ) ∈ 𝐽 )