Metamath Proof Explorer


Theorem mopnm

Description: The base set of a metric space is open. Part of Theorem T1 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion mopnm ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋𝐽 )

Proof

Step Hyp Ref Expression
1 mopnval.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 mopntopon ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 toponmax ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋𝐽 )
4 2 3 syl ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋𝐽 )