Metamath Proof Explorer


Theorem mopnss

Description: An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006)

Ref Expression
Hypothesis mopnval.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion mopnss ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝐴𝑋 )

Proof

Step Hyp Ref Expression
1 mopnval.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 1 mopntopon ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 toponss ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝐴𝑋 )
4 2 3 sylan ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝐴𝑋 )