Description: An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mopnval.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
Assertion | mopnss | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopnval.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
2 | 1 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝑋 ) | |
4 | 2 3 | sylan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝑋 ) |