Step |
Hyp |
Ref |
Expression |
1 |
|
mopnval.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
1
|
mopnval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 = ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ) |
3 |
|
blbas |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ran ( ball ‘ 𝐷 ) ∈ TopBases ) |
4 |
|
tgtopon |
⊢ ( ran ( ball ‘ 𝐷 ) ∈ TopBases → ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ∈ ( TopOn ‘ ∪ ran ( ball ‘ 𝐷 ) ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ∈ ( TopOn ‘ ∪ ran ( ball ‘ 𝐷 ) ) ) |
6 |
|
unirnbl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∪ ran ( ball ‘ 𝐷 ) = 𝑋 ) |
7 |
6
|
fveq2d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( TopOn ‘ ∪ ran ( ball ‘ 𝐷 ) ) = ( TopOn ‘ 𝑋 ) ) |
8 |
5 7
|
eleqtrd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( topGen ‘ ran ( ball ‘ 𝐷 ) ) ∈ ( TopOn ‘ 𝑋 ) ) |
9 |
2 8
|
eqeltrd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |