| Step |
Hyp |
Ref |
Expression |
| 1 |
|
morex.1 |
⊢ 𝐵 ∈ V |
| 2 |
|
morex.2 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 4 |
|
exancom |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) |
| 5 |
3 4
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) |
| 6 |
|
nfmo1 |
⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 |
| 7 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) |
| 8 |
6 7
|
nfan |
⊢ Ⅎ 𝑥 ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) |
| 9 |
|
mopick |
⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝜑 → 𝑥 ∈ 𝐴 ) ) |
| 10 |
8 9
|
alrimi |
⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) → ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) ) |
| 11 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
| 12 |
2 11
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝜑 → 𝑥 ∈ 𝐴 ) ↔ ( 𝜓 → 𝐵 ∈ 𝐴 ) ) ) |
| 13 |
1 12
|
spcv |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝐵 ∈ 𝐴 ) ) |
| 14 |
10 13
|
syl |
⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ) → ( 𝜓 → 𝐵 ∈ 𝐴 ) ) |
| 15 |
5 14
|
sylan2b |
⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜓 → 𝐵 ∈ 𝐴 ) ) |
| 16 |
15
|
ancoms |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃* 𝑥 𝜑 ) → ( 𝜓 → 𝐵 ∈ 𝐴 ) ) |