Metamath Proof Explorer


Theorem morex

Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses morex.1 𝐵 ∈ V
morex.2 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
Assertion morex ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥 𝜑 ) → ( 𝜓𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 morex.1 𝐵 ∈ V
2 morex.2 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
3 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
4 exancom ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝜑𝑥𝐴 ) )
5 3 4 bitri ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝜑𝑥𝐴 ) )
6 nfmo1 𝑥 ∃* 𝑥 𝜑
7 nfe1 𝑥𝑥 ( 𝜑𝑥𝐴 )
8 6 7 nfan 𝑥 ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑𝑥𝐴 ) )
9 mopick ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑𝑥𝐴 ) ) → ( 𝜑𝑥𝐴 ) )
10 8 9 alrimi ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑𝑥𝐴 ) ) → ∀ 𝑥 ( 𝜑𝑥𝐴 ) )
11 eleq1 ( 𝑥 = 𝐵 → ( 𝑥𝐴𝐵𝐴 ) )
12 2 11 imbi12d ( 𝑥 = 𝐵 → ( ( 𝜑𝑥𝐴 ) ↔ ( 𝜓𝐵𝐴 ) ) )
13 1 12 spcv ( ∀ 𝑥 ( 𝜑𝑥𝐴 ) → ( 𝜓𝐵𝐴 ) )
14 10 13 syl ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑𝑥𝐴 ) ) → ( 𝜓𝐵𝐴 ) )
15 5 14 sylan2b ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥𝐴 𝜑 ) → ( 𝜓𝐵𝐴 ) )
16 15 ancoms ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥 𝜑 ) → ( 𝜓𝐵𝐴 ) )