| Step | Hyp | Ref | Expression | 
						
							| 1 |  | morex.1 | ⊢ 𝐵  ∈  V | 
						
							| 2 |  | morex.2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 3 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 4 |  | exancom | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝜑  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑥 ( 𝜑  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 6 |  | nfmo1 | ⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 | 
						
							| 7 |  | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝜑  ∧  𝑥  ∈  𝐴 ) | 
						
							| 8 | 6 7 | nfan | ⊢ Ⅎ 𝑥 ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 9 |  | mopick | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝑥  ∈  𝐴 ) )  →  ( 𝜑  →  𝑥  ∈  𝐴 ) ) | 
						
							| 10 | 8 9 | alrimi | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝑥  ∈  𝐴 ) )  →  ∀ 𝑥 ( 𝜑  →  𝑥  ∈  𝐴 ) ) | 
						
							| 11 |  | eleq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  ∈  𝐴  ↔  𝐵  ∈  𝐴 ) ) | 
						
							| 12 | 2 11 | imbi12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝜑  →  𝑥  ∈  𝐴 )  ↔  ( 𝜓  →  𝐵  ∈  𝐴 ) ) ) | 
						
							| 13 | 1 12 | spcv | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  ∈  𝐴 )  →  ( 𝜓  →  𝐵  ∈  𝐴 ) ) | 
						
							| 14 | 10 13 | syl | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥 ( 𝜑  ∧  𝑥  ∈  𝐴 ) )  →  ( 𝜓  →  𝐵  ∈  𝐴 ) ) | 
						
							| 15 | 5 14 | sylan2b | ⊢ ( ( ∃* 𝑥 𝜑  ∧  ∃ 𝑥  ∈  𝐴 𝜑 )  →  ( 𝜓  →  𝐵  ∈  𝐴 ) ) | 
						
							| 16 | 15 | ancoms | ⊢ ( ( ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃* 𝑥 𝜑 )  →  ( 𝜓  →  𝐵  ∈  𝐴 ) ) |