Metamath Proof Explorer


Theorem moriotass

Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion moriotass ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) → ( 𝑥𝐴 𝜑 ) = ( 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ssrexv ( 𝐴𝐵 → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐵 𝜑 ) )
2 1 imp ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐴 𝜑 ) → ∃ 𝑥𝐵 𝜑 )
3 2 3adant3 ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) → ∃ 𝑥𝐵 𝜑 )
4 simp3 ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) → ∃* 𝑥𝐵 𝜑 )
5 reu5 ( ∃! 𝑥𝐵 𝜑 ↔ ( ∃ 𝑥𝐵 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) )
6 3 4 5 sylanbrc ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) → ∃! 𝑥𝐵 𝜑 )
7 riotass ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐴 𝜑 ∧ ∃! 𝑥𝐵 𝜑 ) → ( 𝑥𝐴 𝜑 ) = ( 𝑥𝐵 𝜑 ) )
8 6 7 syld3an3 ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) → ( 𝑥𝐴 𝜑 ) = ( 𝑥𝐵 𝜑 ) )