Metamath Proof Explorer


Theorem mormo

Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017)

Ref Expression
Assertion mormo ( ∃* 𝑥 𝜑 → ∃* 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 moan ( ∃* 𝑥 𝜑 → ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
2 df-rmo ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥𝐴𝜑 ) )
3 1 2 sylibr ( ∃* 𝑥 𝜑 → ∃* 𝑥𝐴 𝜑 )