Metamath Proof Explorer


Theorem mosn

Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mosn ( 𝐴 = { 𝐵 } → ∃* 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 rmosn ∃* 𝑥 ∈ { 𝐵 } ⊤
2 rmotru ( ∃* 𝑥 𝑥 ∈ { 𝐵 } ↔ ∃* 𝑥 ∈ { 𝐵 } ⊤ )
3 1 2 mpbir ∃* 𝑥 𝑥 ∈ { 𝐵 }
4 eleq2 ( 𝐴 = { 𝐵 } → ( 𝑥𝐴𝑥 ∈ { 𝐵 } ) )
5 4 mobidv ( 𝐴 = { 𝐵 } → ( ∃* 𝑥 𝑥𝐴 ↔ ∃* 𝑥 𝑥 ∈ { 𝐵 } ) )
6 3 5 mpbiri ( 𝐴 = { 𝐵 } → ∃* 𝑥 𝑥𝐴 )