Description: There exists at most one set whose singleton is equal to a given class. See also moeq . (Contributed by BJ, 24-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mosneq | ⊢ ∃* 𝑥 { 𝑥 } = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 | ⊢ ( ( { 𝑥 } = 𝐴 ∧ { 𝑦 } = 𝐴 ) → { 𝑥 } = { 𝑦 } ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | sneqr | ⊢ ( { 𝑥 } = { 𝑦 } → 𝑥 = 𝑦 ) |
| 4 | 1 3 | syl | ⊢ ( ( { 𝑥 } = 𝐴 ∧ { 𝑦 } = 𝐴 ) → 𝑥 = 𝑦 ) |
| 5 | 4 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( ( { 𝑥 } = 𝐴 ∧ { 𝑦 } = 𝐴 ) → 𝑥 = 𝑦 ) |
| 6 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( { 𝑥 } = 𝐴 ↔ { 𝑦 } = 𝐴 ) ) |
| 8 | 7 | mo4 | ⊢ ( ∃* 𝑥 { 𝑥 } = 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( ( { 𝑥 } = 𝐴 ∧ { 𝑦 } = 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 9 | 5 8 | mpbir | ⊢ ∃* 𝑥 { 𝑥 } = 𝐴 |