Metamath Proof Explorer


Theorem mosneq

Description: There exists at most one set whose singleton is equal to a given class. See also moeq . (Contributed by BJ, 24-Sep-2022)

Ref Expression
Assertion mosneq ∃* 𝑥 { 𝑥 } = 𝐴

Proof

Step Hyp Ref Expression
1 eqtr3 ( ( { 𝑥 } = 𝐴 ∧ { 𝑦 } = 𝐴 ) → { 𝑥 } = { 𝑦 } )
2 vex 𝑥 ∈ V
3 2 sneqr ( { 𝑥 } = { 𝑦 } → 𝑥 = 𝑦 )
4 1 3 syl ( ( { 𝑥 } = 𝐴 ∧ { 𝑦 } = 𝐴 ) → 𝑥 = 𝑦 )
5 4 gen2 𝑥𝑦 ( ( { 𝑥 } = 𝐴 ∧ { 𝑦 } = 𝐴 ) → 𝑥 = 𝑦 )
6 sneq ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } )
7 6 eqeq1d ( 𝑥 = 𝑦 → ( { 𝑥 } = 𝐴 ↔ { 𝑦 } = 𝐴 ) )
8 7 mo4 ( ∃* 𝑥 { 𝑥 } = 𝐴 ↔ ∀ 𝑥𝑦 ( ( { 𝑥 } = 𝐴 ∧ { 𝑦 } = 𝐴 ) → 𝑥 = 𝑦 ) )
9 5 8 mpbir ∃* 𝑥 { 𝑥 } = 𝐴