Metamath Proof Explorer


Theorem mosssn

Description: "At most one" element in a subclass of a singleton. (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Assertion mosssn ( 𝐴 ⊆ { 𝐵 } → ∃* 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 sssn ( 𝐴 ⊆ { 𝐵 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) )
2 mo0 ( 𝐴 = ∅ → ∃* 𝑥 𝑥𝐴 )
3 mosn ( 𝐴 = { 𝐵 } → ∃* 𝑥 𝑥𝐴 )
4 2 3 jaoi ( ( 𝐴 = ∅ ∨ 𝐴 = { 𝐵 } ) → ∃* 𝑥 𝑥𝐴 )
5 1 4 sylbi ( 𝐴 ⊆ { 𝐵 } → ∃* 𝑥 𝑥𝐴 )