Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | mosssn2 | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑦 𝐴 ⊆ { 𝑦 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.45v | ⊢ ( ∃ 𝑦 ( 𝐴 = ∅ ∨ 𝐴 = { 𝑦 } ) ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) | |
2 | sssn | ⊢ ( 𝐴 ⊆ { 𝑦 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝑦 } ) ) | |
3 | 2 | exbii | ⊢ ( ∃ 𝑦 𝐴 ⊆ { 𝑦 } ↔ ∃ 𝑦 ( 𝐴 = ∅ ∨ 𝐴 = { 𝑦 } ) ) |
4 | mo0sn | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) | |
5 | 1 3 4 | 3bitr4ri | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑦 𝐴 ⊆ { 𝑦 } ) |