Metamath Proof Explorer


Theorem mosssn2

Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Assertion mosssn2 ( ∃* 𝑥 𝑥𝐴 ↔ ∃ 𝑦 𝐴 ⊆ { 𝑦 } )

Proof

Step Hyp Ref Expression
1 19.45v ( ∃ 𝑦 ( 𝐴 = ∅ ∨ 𝐴 = { 𝑦 } ) ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) )
2 sssn ( 𝐴 ⊆ { 𝑦 } ↔ ( 𝐴 = ∅ ∨ 𝐴 = { 𝑦 } ) )
3 2 exbii ( ∃ 𝑦 𝐴 ⊆ { 𝑦 } ↔ ∃ 𝑦 ( 𝐴 = ∅ ∨ 𝐴 = { 𝑦 } ) )
4 mo0sn ( ∃* 𝑥 𝑥𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) )
5 1 3 4 3bitr4ri ( ∃* 𝑥 𝑥𝐴 ↔ ∃ 𝑦 𝐴 ⊆ { 𝑦 } )