| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismot.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ismot.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
motgrp.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 4 |
|
motcgr.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 5 |
|
motcgr.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 6 |
|
motcgr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ) |
| 7 |
1 2
|
ismot |
⊢ ( 𝐺 ∈ 𝑉 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
| 8 |
3 7
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝐹 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
| 9 |
6 8
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) |
| 10 |
9
|
simprd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 12 |
11
|
oveq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑏 ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 − 𝑏 ) = ( 𝐴 − 𝑏 ) ) |
| 14 |
12 13
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ↔ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝐴 − 𝑏 ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 − 𝑏 ) = ( 𝐴 − 𝐵 ) ) |
| 18 |
16 17
|
eqeq12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝐴 − 𝑏 ) ↔ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) ) |
| 19 |
14 18
|
rspc2va |
⊢ ( ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃 ) ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝐹 ‘ 𝑎 ) − ( 𝐹 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
| 20 |
4 5 10 19
|
syl21anc |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |