Metamath Proof Explorer


Theorem motcgr3

Description: Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses motcgr3.p 𝑃 = ( Base ‘ 𝐺 )
motcgr3.m = ( dist ‘ 𝐺 )
motcgr3.r = ( cgrG ‘ 𝐺 )
motcgr3.g ( 𝜑𝐺 ∈ TarskiG )
motcgr3.a ( 𝜑𝐴𝑃 )
motcgr3.b ( 𝜑𝐵𝑃 )
motcgr3.c ( 𝜑𝐶𝑃 )
motcgr3.d ( 𝜑𝐷 = ( 𝐻𝐴 ) )
motcgr3.e ( 𝜑𝐸 = ( 𝐻𝐵 ) )
motcgr3.f ( 𝜑𝐹 = ( 𝐻𝐶 ) )
motcgr3.h ( 𝜑𝐻 ∈ ( 𝐺 Ismt 𝐺 ) )
Assertion motcgr3 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝐸 𝐹 ”⟩ )

Proof

Step Hyp Ref Expression
1 motcgr3.p 𝑃 = ( Base ‘ 𝐺 )
2 motcgr3.m = ( dist ‘ 𝐺 )
3 motcgr3.r = ( cgrG ‘ 𝐺 )
4 motcgr3.g ( 𝜑𝐺 ∈ TarskiG )
5 motcgr3.a ( 𝜑𝐴𝑃 )
6 motcgr3.b ( 𝜑𝐵𝑃 )
7 motcgr3.c ( 𝜑𝐶𝑃 )
8 motcgr3.d ( 𝜑𝐷 = ( 𝐻𝐴 ) )
9 motcgr3.e ( 𝜑𝐸 = ( 𝐻𝐵 ) )
10 motcgr3.f ( 𝜑𝐹 = ( 𝐻𝐶 ) )
11 motcgr3.h ( 𝜑𝐻 ∈ ( 𝐺 Ismt 𝐺 ) )
12 1 2 4 11 5 motcl ( 𝜑 → ( 𝐻𝐴 ) ∈ 𝑃 )
13 8 12 eqeltrd ( 𝜑𝐷𝑃 )
14 1 2 4 11 6 motcl ( 𝜑 → ( 𝐻𝐵 ) ∈ 𝑃 )
15 9 14 eqeltrd ( 𝜑𝐸𝑃 )
16 1 2 4 11 7 motcl ( 𝜑 → ( 𝐻𝐶 ) ∈ 𝑃 )
17 10 16 eqeltrd ( 𝜑𝐹𝑃 )
18 8 9 oveq12d ( 𝜑 → ( 𝐷 𝐸 ) = ( ( 𝐻𝐴 ) ( 𝐻𝐵 ) ) )
19 1 2 4 5 6 11 motcgr ( 𝜑 → ( ( 𝐻𝐴 ) ( 𝐻𝐵 ) ) = ( 𝐴 𝐵 ) )
20 18 19 eqtr2d ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐷 𝐸 ) )
21 9 10 oveq12d ( 𝜑 → ( 𝐸 𝐹 ) = ( ( 𝐻𝐵 ) ( 𝐻𝐶 ) ) )
22 1 2 4 6 7 11 motcgr ( 𝜑 → ( ( 𝐻𝐵 ) ( 𝐻𝐶 ) ) = ( 𝐵 𝐶 ) )
23 21 22 eqtr2d ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐸 𝐹 ) )
24 10 8 oveq12d ( 𝜑 → ( 𝐹 𝐷 ) = ( ( 𝐻𝐶 ) ( 𝐻𝐴 ) ) )
25 1 2 4 7 5 11 motcgr ( 𝜑 → ( ( 𝐻𝐶 ) ( 𝐻𝐴 ) ) = ( 𝐶 𝐴 ) )
26 24 25 eqtr2d ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐹 𝐷 ) )
27 1 2 3 4 5 6 7 13 15 17 20 23 26 trgcgr ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ⟨“ 𝐷 𝐸 𝐹 ”⟩ )