Step |
Hyp |
Ref |
Expression |
1 |
|
motcgr3.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
motcgr3.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
motcgr3.r |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
4 |
|
motcgr3.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
motcgr3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
motcgr3.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
motcgr3.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
motcgr3.d |
⊢ ( 𝜑 → 𝐷 = ( 𝐻 ‘ 𝐴 ) ) |
9 |
|
motcgr3.e |
⊢ ( 𝜑 → 𝐸 = ( 𝐻 ‘ 𝐵 ) ) |
10 |
|
motcgr3.f |
⊢ ( 𝜑 → 𝐹 = ( 𝐻 ‘ 𝐶 ) ) |
11 |
|
motcgr3.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐺 Ismt 𝐺 ) ) |
12 |
1 2 4 11 5
|
motcl |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐴 ) ∈ 𝑃 ) |
13 |
8 12
|
eqeltrd |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
14 |
1 2 4 11 6
|
motcl |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐵 ) ∈ 𝑃 ) |
15 |
9 14
|
eqeltrd |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
16 |
1 2 4 11 7
|
motcl |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝐶 ) ∈ 𝑃 ) |
17 |
10 16
|
eqeltrd |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
18 |
8 9
|
oveq12d |
⊢ ( 𝜑 → ( 𝐷 − 𝐸 ) = ( ( 𝐻 ‘ 𝐴 ) − ( 𝐻 ‘ 𝐵 ) ) ) |
19 |
1 2 4 5 6 11
|
motcgr |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐴 ) − ( 𝐻 ‘ 𝐵 ) ) = ( 𝐴 − 𝐵 ) ) |
20 |
18 19
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
21 |
9 10
|
oveq12d |
⊢ ( 𝜑 → ( 𝐸 − 𝐹 ) = ( ( 𝐻 ‘ 𝐵 ) − ( 𝐻 ‘ 𝐶 ) ) ) |
22 |
1 2 4 6 7 11
|
motcgr |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐵 ) − ( 𝐻 ‘ 𝐶 ) ) = ( 𝐵 − 𝐶 ) ) |
23 |
21 22
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
24 |
10 8
|
oveq12d |
⊢ ( 𝜑 → ( 𝐹 − 𝐷 ) = ( ( 𝐻 ‘ 𝐶 ) − ( 𝐻 ‘ 𝐴 ) ) ) |
25 |
1 2 4 7 5 11
|
motcgr |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝐶 ) − ( 𝐻 ‘ 𝐴 ) ) = ( 𝐶 − 𝐴 ) ) |
26 |
24 25
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
27 |
1 2 3 4 5 6 7 13 15 17 20 23 26
|
trgcgr |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∼ 〈“ 𝐷 𝐸 𝐹 ”〉 ) |