Step |
Hyp |
Ref |
Expression |
1 |
|
ismot.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismot.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
motgrp.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
4 |
|
motgrp.i |
⊢ 𝐼 = { 〈 ( Base ‘ ndx ) , ( 𝐺 Ismt 𝐺 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } |
5 |
|
motcgrg.r |
⊢ ∼ = ( cgrG ‘ 𝐺 ) |
6 |
|
motcgrg.t |
⊢ ( 𝜑 → 𝑇 ∈ Word 𝑃 ) |
7 |
|
motcgrg.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) → 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) |
9 |
8
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) |
10 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ) |
11 |
1 2 3 7
|
motf1o |
⊢ ( 𝜑 → 𝐹 : 𝑃 –1-1-onto→ 𝑃 ) |
12 |
|
f1of |
⊢ ( 𝐹 : 𝑃 –1-1-onto→ 𝑃 → 𝐹 : 𝑃 ⟶ 𝑃 ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑃 ⟶ 𝑃 ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) → 𝐹 : 𝑃 ⟶ 𝑃 ) |
15 |
|
fco |
⊢ ( ( 𝐹 : 𝑃 ⟶ 𝑃 ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) → ( 𝐹 ∘ 𝑇 ) : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) |
16 |
14 8 15
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) → ( 𝐹 ∘ 𝑇 ) : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → ( 𝐹 ∘ 𝑇 ) : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) |
18 |
17
|
fdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → dom ( 𝐹 ∘ 𝑇 ) = ( 0 ..^ 𝑛 ) ) |
19 |
10 18
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → 𝑎 ∈ ( 0 ..^ 𝑛 ) ) |
20 |
|
fvco3 |
⊢ ( ( 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ∧ 𝑎 ∈ ( 0 ..^ 𝑛 ) ) → ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
21 |
9 19 20
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
22 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) |
23 |
22 18
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → 𝑏 ∈ ( 0 ..^ 𝑛 ) ) |
24 |
|
fvco3 |
⊢ ( ( 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ∧ 𝑏 ∈ ( 0 ..^ 𝑛 ) ) → ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝑇 ‘ 𝑏 ) ) ) |
25 |
9 23 24
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝑇 ‘ 𝑏 ) ) ) |
26 |
21 25
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → ( ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑎 ) − ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑇 ‘ 𝑎 ) ) − ( 𝐹 ‘ ( 𝑇 ‘ 𝑏 ) ) ) ) |
27 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) → 𝐺 ∈ 𝑉 ) |
28 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → 𝐺 ∈ 𝑉 ) |
29 |
9 19
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → ( 𝑇 ‘ 𝑎 ) ∈ 𝑃 ) |
30 |
9 23
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → ( 𝑇 ‘ 𝑏 ) ∈ 𝑃 ) |
31 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ) |
32 |
1 2 28 29 30 31
|
motcgr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → ( ( 𝐹 ‘ ( 𝑇 ‘ 𝑎 ) ) − ( 𝐹 ‘ ( 𝑇 ‘ 𝑏 ) ) ) = ( ( 𝑇 ‘ 𝑎 ) − ( 𝑇 ‘ 𝑏 ) ) ) |
33 |
26 32
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) ∧ ( 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∧ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ) ) → ( ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑎 ) − ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑏 ) ) = ( ( 𝑇 ‘ 𝑎 ) − ( 𝑇 ‘ 𝑏 ) ) ) |
34 |
33
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) → ∀ 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∀ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ( ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑎 ) − ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑏 ) ) = ( ( 𝑇 ‘ 𝑎 ) − ( 𝑇 ‘ 𝑏 ) ) ) |
35 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ 𝑛 ) ⊆ ℕ0 |
36 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
37 |
35 36
|
sstri |
⊢ ( 0 ..^ 𝑛 ) ⊆ ℝ |
38 |
37
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) → ( 0 ..^ 𝑛 ) ⊆ ℝ ) |
39 |
1 2 5 27 38 16 8
|
iscgrgd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) → ( ( 𝐹 ∘ 𝑇 ) ∼ 𝑇 ↔ ∀ 𝑎 ∈ dom ( 𝐹 ∘ 𝑇 ) ∀ 𝑏 ∈ dom ( 𝐹 ∘ 𝑇 ) ( ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑎 ) − ( ( 𝐹 ∘ 𝑇 ) ‘ 𝑏 ) ) = ( ( 𝑇 ‘ 𝑎 ) − ( 𝑇 ‘ 𝑏 ) ) ) ) |
40 |
34 39
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) → ( 𝐹 ∘ 𝑇 ) ∼ 𝑇 ) |
41 |
|
iswrd |
⊢ ( 𝑇 ∈ Word 𝑃 ↔ ∃ 𝑛 ∈ ℕ0 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) |
42 |
6 41
|
sylib |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ0 𝑇 : ( 0 ..^ 𝑛 ) ⟶ 𝑃 ) |
43 |
40 42
|
r19.29a |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝑇 ) ∼ 𝑇 ) |