Step |
Hyp |
Ref |
Expression |
1 |
|
ismot.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismot.m |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
motgrp.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
4 |
|
motgrp.i |
⊢ 𝐼 = { 〈 ( Base ‘ ndx ) , ( 𝐺 Ismt 𝐺 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } |
5 |
|
ovex |
⊢ ( 𝐺 Ismt 𝐺 ) ∈ V |
6 |
4
|
grpbase |
⊢ ( ( 𝐺 Ismt 𝐺 ) ∈ V → ( 𝐺 Ismt 𝐺 ) = ( Base ‘ 𝐼 ) ) |
7 |
5 6
|
mp1i |
⊢ ( 𝜑 → ( 𝐺 Ismt 𝐺 ) = ( Base ‘ 𝐼 ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝐼 ) = ( +g ‘ 𝐼 ) ) |
9 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ) → 𝐺 ∈ 𝑉 ) |
10 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ) → 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) |
11 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ) → 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ) |
12 |
1 2 9 4 10 11
|
motplusg |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
13 |
1 2 9 10 11
|
motco |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( 𝐺 Ismt 𝐺 ) ) |
14 |
12 13
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 ) ∈ ( 𝐺 Ismt 𝐺 ) ) |
15 |
|
coass |
⊢ ( ( 𝑓 ∘ 𝑔 ) ∘ ℎ ) = ( 𝑓 ∘ ( 𝑔 ∘ ℎ ) ) |
16 |
12
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 ) = ( 𝑓 ∘ 𝑔 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 ) ( +g ‘ 𝐼 ) ℎ ) = ( ( 𝑓 ∘ 𝑔 ) ( +g ‘ 𝐼 ) ℎ ) ) |
18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → 𝐺 ∈ 𝑉 ) |
19 |
13
|
3adant3r3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( 𝐺 Ismt 𝐺 ) ) |
20 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) |
21 |
1 2 18 4 19 20
|
motplusg |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( ( 𝑓 ∘ 𝑔 ) ( +g ‘ 𝐼 ) ℎ ) = ( ( 𝑓 ∘ 𝑔 ) ∘ ℎ ) ) |
22 |
17 21
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 ) ( +g ‘ 𝐼 ) ℎ ) = ( ( 𝑓 ∘ 𝑔 ) ∘ ℎ ) ) |
23 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ) |
24 |
1 2 18 4 23 20
|
motplusg |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( 𝑔 ( +g ‘ 𝐼 ) ℎ ) = ( 𝑔 ∘ ℎ ) ) |
25 |
24
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔 ( +g ‘ 𝐼 ) ℎ ) ) = ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔 ∘ ℎ ) ) ) |
26 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) |
27 |
1 2 18 23 20
|
motco |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( 𝑔 ∘ ℎ ) ∈ ( 𝐺 Ismt 𝐺 ) ) |
28 |
1 2 18 4 26 27
|
motplusg |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔 ∘ ℎ ) ) = ( 𝑓 ∘ ( 𝑔 ∘ ℎ ) ) ) |
29 |
25 28
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔 ( +g ‘ 𝐼 ) ℎ ) ) = ( 𝑓 ∘ ( 𝑔 ∘ ℎ ) ) ) |
30 |
15 22 29
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ℎ ∈ ( 𝐺 Ismt 𝐺 ) ) ) → ( ( 𝑓 ( +g ‘ 𝐼 ) 𝑔 ) ( +g ‘ 𝐼 ) ℎ ) = ( 𝑓 ( +g ‘ 𝐼 ) ( 𝑔 ( +g ‘ 𝐼 ) ℎ ) ) ) |
31 |
1 2 3
|
idmot |
⊢ ( 𝜑 → ( I ↾ 𝑃 ) ∈ ( 𝐺 Ismt 𝐺 ) ) |
32 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → 𝐺 ∈ 𝑉 ) |
33 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( I ↾ 𝑃 ) ∈ ( 𝐺 Ismt 𝐺 ) ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) |
35 |
1 2 32 4 33 34
|
motplusg |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( ( I ↾ 𝑃 ) ( +g ‘ 𝐼 ) 𝑓 ) = ( ( I ↾ 𝑃 ) ∘ 𝑓 ) ) |
36 |
1 2
|
ismot |
⊢ ( 𝐺 ∈ 𝑉 → ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝑓 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝑓 ‘ 𝑎 ) − ( 𝑓 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
37 |
36
|
simprbda |
⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → 𝑓 : 𝑃 –1-1-onto→ 𝑃 ) |
38 |
3 37
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → 𝑓 : 𝑃 –1-1-onto→ 𝑃 ) |
39 |
|
f1of |
⊢ ( 𝑓 : 𝑃 –1-1-onto→ 𝑃 → 𝑓 : 𝑃 ⟶ 𝑃 ) |
40 |
|
fcoi2 |
⊢ ( 𝑓 : 𝑃 ⟶ 𝑃 → ( ( I ↾ 𝑃 ) ∘ 𝑓 ) = 𝑓 ) |
41 |
38 39 40
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( ( I ↾ 𝑃 ) ∘ 𝑓 ) = 𝑓 ) |
42 |
35 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( ( I ↾ 𝑃 ) ( +g ‘ 𝐼 ) 𝑓 ) = 𝑓 ) |
43 |
1 2 32 34
|
cnvmot |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → ◡ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) |
44 |
1 2 32 4 43 34
|
motplusg |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( ◡ 𝑓 ( +g ‘ 𝐼 ) 𝑓 ) = ( ◡ 𝑓 ∘ 𝑓 ) ) |
45 |
|
f1ococnv1 |
⊢ ( 𝑓 : 𝑃 –1-1-onto→ 𝑃 → ( ◡ 𝑓 ∘ 𝑓 ) = ( I ↾ 𝑃 ) ) |
46 |
38 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( ◡ 𝑓 ∘ 𝑓 ) = ( I ↾ 𝑃 ) ) |
47 |
44 46
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( ◡ 𝑓 ( +g ‘ 𝐼 ) 𝑓 ) = ( I ↾ 𝑃 ) ) |
48 |
7 8 14 30 31 42 43 47
|
isgrpd |
⊢ ( 𝜑 → 𝐼 ∈ Grp ) |