| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismot.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
ismot.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
motgrp.1 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 4 |
|
motgrp.i |
⊢ 𝐼 = { 〈 ( Base ‘ ndx ) , ( 𝐺 Ismt 𝐺 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓 ∘ 𝑔 ) ) 〉 } |
| 5 |
|
motplusg.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ) |
| 6 |
|
motplusg.2 |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝐺 Ismt 𝐺 ) ) |
| 7 |
|
coexg |
⊢ ( ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝐻 ∈ ( 𝐺 Ismt 𝐺 ) ) → ( 𝐹 ∘ 𝐻 ) ∈ V ) |
| 8 |
5 6 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) ∈ V ) |
| 9 |
|
coeq1 |
⊢ ( 𝑎 = 𝐹 → ( 𝑎 ∘ 𝑏 ) = ( 𝐹 ∘ 𝑏 ) ) |
| 10 |
|
coeq2 |
⊢ ( 𝑏 = 𝐻 → ( 𝐹 ∘ 𝑏 ) = ( 𝐹 ∘ 𝐻 ) ) |
| 11 |
|
ovex |
⊢ ( 𝐺 Ismt 𝐺 ) ∈ V |
| 12 |
11 11
|
mpoex |
⊢ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ∈ V |
| 13 |
4
|
grpplusg |
⊢ ( ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓 ∘ 𝑔 ) ) ∈ V → ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( +g ‘ 𝐼 ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( +g ‘ 𝐼 ) |
| 15 |
|
coeq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ∘ 𝑔 ) = ( 𝑎 ∘ 𝑔 ) ) |
| 16 |
|
coeq2 |
⊢ ( 𝑔 = 𝑏 → ( 𝑎 ∘ 𝑔 ) = ( 𝑎 ∘ 𝑏 ) ) |
| 17 |
15 16
|
cbvmpov |
⊢ ( 𝑓 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑔 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑎 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑏 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑎 ∘ 𝑏 ) ) |
| 18 |
14 17
|
eqtr3i |
⊢ ( +g ‘ 𝐼 ) = ( 𝑎 ∈ ( 𝐺 Ismt 𝐺 ) , 𝑏 ∈ ( 𝐺 Ismt 𝐺 ) ↦ ( 𝑎 ∘ 𝑏 ) ) |
| 19 |
9 10 18
|
ovmpog |
⊢ ( ( 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ∧ 𝐻 ∈ ( 𝐺 Ismt 𝐺 ) ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ) → ( 𝐹 ( +g ‘ 𝐼 ) 𝐻 ) = ( 𝐹 ∘ 𝐻 ) ) |
| 20 |
5 6 8 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ( +g ‘ 𝐼 ) 𝐻 ) = ( 𝐹 ∘ 𝐻 ) ) |