Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
israg.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
israg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
israg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
israg.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
israg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
israg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
israg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
israg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
10 |
|
motrag.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 Ismt 𝐺 ) ) |
11 |
|
motrag.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
12 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
13 |
1 2 6 10 7
|
motcl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑃 ) |
14 |
1 2 6 10 8
|
motcl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ 𝑃 ) |
15 |
1 2 6 10 9
|
motcl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ 𝑃 ) |
16 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐴 ) ) |
17 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
18 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) = ( 𝐹 ‘ 𝐶 ) ) |
19 |
1 2 12 6 7 8 9 16 17 18 10
|
motcgr3 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ ( 𝐹 ‘ 𝐴 ) ( 𝐹 ‘ 𝐵 ) ( 𝐹 ‘ 𝐶 ) ”〉 ) |
20 |
1 2 3 4 5 6 7 8 9 12 13 14 15 11 19
|
ragcgr |
⊢ ( 𝜑 → 〈“ ( 𝐹 ‘ 𝐴 ) ( 𝐹 ‘ 𝐵 ) ( 𝐹 ‘ 𝐶 ) ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |