Metamath Proof Explorer


Theorem motrag

Description: Right angles are preserved by motions. (Contributed by Thierry Arnoux, 16-Dec-2019)

Ref Expression
Hypotheses israg.p 𝑃 = ( Base ‘ 𝐺 )
israg.d = ( dist ‘ 𝐺 )
israg.i 𝐼 = ( Itv ‘ 𝐺 )
israg.l 𝐿 = ( LineG ‘ 𝐺 )
israg.s 𝑆 = ( pInvG ‘ 𝐺 )
israg.g ( 𝜑𝐺 ∈ TarskiG )
israg.a ( 𝜑𝐴𝑃 )
israg.b ( 𝜑𝐵𝑃 )
israg.c ( 𝜑𝐶𝑃 )
motrag.f ( 𝜑𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )
motrag.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
Assertion motrag ( 𝜑 → ⟨“ ( 𝐹𝐴 ) ( 𝐹𝐵 ) ( 𝐹𝐶 ) ”⟩ ∈ ( ∟G ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 israg.p 𝑃 = ( Base ‘ 𝐺 )
2 israg.d = ( dist ‘ 𝐺 )
3 israg.i 𝐼 = ( Itv ‘ 𝐺 )
4 israg.l 𝐿 = ( LineG ‘ 𝐺 )
5 israg.s 𝑆 = ( pInvG ‘ 𝐺 )
6 israg.g ( 𝜑𝐺 ∈ TarskiG )
7 israg.a ( 𝜑𝐴𝑃 )
8 israg.b ( 𝜑𝐵𝑃 )
9 israg.c ( 𝜑𝐶𝑃 )
10 motrag.f ( 𝜑𝐹 ∈ ( 𝐺 Ismt 𝐺 ) )
11 motrag.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( ∟G ‘ 𝐺 ) )
12 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
13 1 2 6 10 7 motcl ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑃 )
14 1 2 6 10 8 motcl ( 𝜑 → ( 𝐹𝐵 ) ∈ 𝑃 )
15 1 2 6 10 9 motcl ( 𝜑 → ( 𝐹𝐶 ) ∈ 𝑃 )
16 eqidd ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐹𝐴 ) )
17 eqidd ( 𝜑 → ( 𝐹𝐵 ) = ( 𝐹𝐵 ) )
18 eqidd ( 𝜑 → ( 𝐹𝐶 ) = ( 𝐹𝐶 ) )
19 1 2 12 6 7 8 9 16 17 18 10 motcgr3 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ ( 𝐹𝐴 ) ( 𝐹𝐵 ) ( 𝐹𝐶 ) ”⟩ )
20 1 2 3 4 5 6 7 8 9 12 13 14 15 11 19 ragcgr ( 𝜑 → ⟨“ ( 𝐹𝐴 ) ( 𝐹𝐵 ) ( 𝐹𝐶 ) ”⟩ ∈ ( ∟G ‘ 𝐺 ) )