Metamath Proof Explorer


Theorem mp2an

Description: An inference based on modus ponens. (Contributed by NM, 13-Apr-1995)

Ref Expression
Hypotheses mp2an.1 𝜑
mp2an.2 𝜓
mp2an.3 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion mp2an 𝜒

Proof

Step Hyp Ref Expression
1 mp2an.1 𝜑
2 mp2an.2 𝜓
3 mp2an.3 ( ( 𝜑𝜓 ) → 𝜒 )
4 1 3 mpan ( 𝜓𝜒 )
5 2 4 ax-mp 𝜒