Metamath Proof Explorer


Theorem mp2and

Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004)

Ref Expression
Hypotheses mp2and.1 ( 𝜑𝜓 )
mp2and.2 ( 𝜑𝜒 )
mp2and.3 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
Assertion mp2and ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 mp2and.1 ( 𝜑𝜓 )
2 mp2and.2 ( 𝜑𝜒 )
3 mp2and.3 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
4 1 3 mpand ( 𝜑 → ( 𝜒𝜃 ) )
5 2 4 mpd ( 𝜑𝜃 )