Metamath Proof Explorer


Theorem mp2ani

Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004)

Ref Expression
Hypotheses mp2ani.1 𝜓
mp2ani.2 𝜒
mp2ani.3 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
Assertion mp2ani ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 mp2ani.1 𝜓
2 mp2ani.2 𝜒
3 mp2ani.3 ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )
4 1 3 mpani ( 𝜑 → ( 𝜒𝜃 ) )
5 2 4 mpi ( 𝜑𝜃 )