Step |
Hyp |
Ref |
Expression |
1 |
|
mp2pm2mp.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mp2pm2mp.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
3 |
|
mp2pm2mp.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
4 |
|
mp2pm2mp.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
5 |
|
mp2pm2mp.e |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
mp2pm2mp.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
7 |
|
mp2pm2mp.i |
⊢ 𝐼 = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
8 |
|
mp2pm2mplem2.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
9 |
|
mp2pm2mp.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
10 |
|
eqid |
⊢ ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 ) |
11 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) ) |
12 |
1 2 3 8 4 5 6 7 10 11
|
mply1topmatcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) |
13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑄 ) = ( ·𝑠 ‘ 𝑄 ) |
14 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
15 |
|
eqid |
⊢ ( var1 ‘ 𝐴 ) = ( var1 ‘ 𝐴 ) |
16 |
8 10 11 13 14 15 1 2 9
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) → ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
17 |
12 16
|
syld3an3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
18 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝐴 ∈ Ring ) |
20 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
21 |
2
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
22 |
|
ringcmn |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ CMnd ) |
23 |
18 21 22
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ CMnd ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑄 ∈ CMnd ) |
25 |
|
nn0ex |
⊢ ℕ0 ∈ V |
26 |
25
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ℕ0 ∈ V ) |
27 |
19
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐴 ∈ Ring ) |
28 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
29 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) |
30 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
32 |
8 10 11 1 31
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ∈ ( Base ‘ 𝐴 ) ) |
33 |
28 29 30 32
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ∈ ( Base ‘ 𝐴 ) ) |
34 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
35 |
31 2 15 13 34 14 3
|
ply1tmcl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ∈ ( Base ‘ 𝐴 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ 𝐿 ) |
36 |
27 33 30 35
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ∈ 𝐿 ) |
37 |
36
|
fmpttd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ 𝐿 ) |
38 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) ) |
39 |
38
|
oveqd |
⊢ ( 𝑘 = 𝑛 → ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) ) |
40 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 𝐸 𝑌 ) = ( 𝑛 𝐸 𝑌 ) ) |
41 |
39 40
|
oveq12d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) |
42 |
41
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) |
43 |
42
|
a1i |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) |
45 |
44
|
mpoeq3ia |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) |
46 |
45
|
mpteq2i |
⊢ ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) ) |
47 |
7 46
|
eqtri |
⊢ 𝐼 = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) ) |
48 |
1 2 3 4 5 6 47 8 13 14 15
|
mp2pm2mplem5 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |
49 |
3 20 24 26 37 48
|
gsumcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ 𝐿 ) |
50 |
|
simp3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑂 ∈ 𝐿 ) |
51 |
19 49 50
|
3jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ 𝐿 ∧ 𝑂 ∈ 𝐿 ) ) |
52 |
1 2 3 4 5 6 7 8
|
mp2pm2mplem4 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ) |
53 |
52
|
oveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) = ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) |
54 |
53
|
adantlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) = ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) |
55 |
54
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) |
56 |
55
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
57 |
56
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ) |
58 |
57
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) ) |
59 |
19 50
|
jca |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐴 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝐴 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ) |
61 |
|
eqid |
⊢ ( coe1 ‘ 𝑂 ) = ( coe1 ‘ 𝑂 ) |
62 |
2 15 3 13 34 14 61
|
ply1coe |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑂 = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
63 |
60 62
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → 𝑂 = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
64 |
63
|
eqcomd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = 𝑂 ) |
65 |
64
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) = ( coe1 ‘ 𝑂 ) ) |
66 |
65
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) ) |
67 |
58 66
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) ) |
68 |
67
|
ralrimiva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ∀ 𝑙 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) ) |
69 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) |
70 |
2 3 69 61
|
eqcoe1ply1eq |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ∈ 𝐿 ∧ 𝑂 ∈ 𝐿 ) → ( ∀ 𝑙 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = 𝑂 ) ) |
71 |
51 68 70
|
sylc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑛 ) ( ·𝑠 ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) = 𝑂 ) |
72 |
17 71
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) ) = 𝑂 ) |