Metamath Proof Explorer


Theorem mp2pm2mp

Description: A polynomial over matrices transformed into a polynomial matrix transformed back into the polynomial over matrices. (Contributed by AV, 12-Oct-2019)

Ref Expression
Hypotheses mp2pm2mp.a 𝐴 = ( 𝑁 Mat 𝑅 )
mp2pm2mp.q 𝑄 = ( Poly1𝐴 )
mp2pm2mp.l 𝐿 = ( Base ‘ 𝑄 )
mp2pm2mp.m · = ( ·𝑠𝑃 )
mp2pm2mp.e 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
mp2pm2mp.y 𝑌 = ( var1𝑅 )
mp2pm2mp.i 𝐼 = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) )
mp2pm2mplem2.p 𝑃 = ( Poly1𝑅 )
mp2pm2mp.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
Assertion mp2pm2mp ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑇 ‘ ( 𝐼𝑂 ) ) = 𝑂 )

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mp2pm2mp.q 𝑄 = ( Poly1𝐴 )
3 mp2pm2mp.l 𝐿 = ( Base ‘ 𝑄 )
4 mp2pm2mp.m · = ( ·𝑠𝑃 )
5 mp2pm2mp.e 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
6 mp2pm2mp.y 𝑌 = ( var1𝑅 )
7 mp2pm2mp.i 𝐼 = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) )
8 mp2pm2mplem2.p 𝑃 = ( Poly1𝑅 )
9 mp2pm2mp.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
10 eqid ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 )
11 eqid ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) )
12 1 2 3 8 4 5 6 7 10 11 mply1topmatcl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝐼𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) )
13 eqid ( ·𝑠𝑄 ) = ( ·𝑠𝑄 )
14 eqid ( .g ‘ ( mulGrp ‘ 𝑄 ) ) = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
15 eqid ( var1𝐴 ) = ( var1𝐴 )
16 8 10 11 13 14 15 1 2 9 pm2mpfval ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝐼𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) → ( 𝑇 ‘ ( 𝐼𝑂 ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) )
17 12 16 syld3an3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑇 ‘ ( 𝐼𝑂 ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) )
18 1 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
19 18 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → 𝐴 ∈ Ring )
20 eqid ( 0g𝑄 ) = ( 0g𝑄 )
21 2 ply1ring ( 𝐴 ∈ Ring → 𝑄 ∈ Ring )
22 ringcmn ( 𝑄 ∈ Ring → 𝑄 ∈ CMnd )
23 18 21 22 3syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ CMnd )
24 23 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → 𝑄 ∈ CMnd )
25 nn0ex 0 ∈ V
26 25 a1i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ℕ0 ∈ V )
27 19 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐴 ∈ Ring )
28 simpl2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring )
29 12 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐼𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) )
30 simpr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 )
31 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
32 8 10 11 1 31 decpmatcl ( ( 𝑅 ∈ Ring ∧ ( 𝐼𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ∈ ( Base ‘ 𝐴 ) )
33 28 29 30 32 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ∈ ( Base ‘ 𝐴 ) )
34 eqid ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 )
35 31 2 15 13 34 14 3 ply1tmcl ( ( 𝐴 ∈ Ring ∧ ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ∈ ( Base ‘ 𝐴 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ∈ 𝐿 )
36 27 33 30 35 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ∈ 𝐿 )
37 36 fmpttd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) : ℕ0𝐿 )
38 fveq2 ( 𝑘 = 𝑛 → ( ( coe1𝑝 ) ‘ 𝑘 ) = ( ( coe1𝑝 ) ‘ 𝑛 ) )
39 38 oveqd ( 𝑘 = 𝑛 → ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑛 ) 𝑗 ) )
40 oveq1 ( 𝑘 = 𝑛 → ( 𝑘 𝐸 𝑌 ) = ( 𝑛 𝐸 𝑌 ) )
41 39 40 oveq12d ( 𝑘 = 𝑛 → ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) )
42 41 cbvmptv ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) )
43 42 a1i ( ( 𝑖𝑁𝑗𝑁 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) )
44 43 oveq2d ( ( 𝑖𝑁𝑗𝑁 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) )
45 44 mpoeq3ia ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) )
46 45 mpteq2i ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) )
47 7 46 eqtri 𝐼 = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑛 ) 𝑗 ) · ( 𝑛 𝐸 𝑌 ) ) ) ) ) )
48 1 2 3 4 5 6 47 8 13 14 15 mp2pm2mplem5 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) finSupp ( 0g𝑄 ) )
49 3 20 24 26 37 48 gsumcl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ∈ 𝐿 )
50 simp3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → 𝑂𝐿 )
51 19 49 50 3jca ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ∈ 𝐿𝑂𝐿 ) )
52 1 2 3 4 5 6 7 8 mp2pm2mplem4 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐼𝑂 ) decompPMat 𝑛 ) = ( ( coe1𝑂 ) ‘ 𝑛 ) )
53 52 oveq1d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) = ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) )
54 53 adantlr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) = ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) )
55 54 mpteq2dva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) )
56 55 oveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) )
57 56 fveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) )
58 57 fveq1d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) ‘ 𝑙 ) )
59 19 50 jca ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝐴 ∈ Ring ∧ 𝑂𝐿 ) )
60 59 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝐴 ∈ Ring ∧ 𝑂𝐿 ) )
61 eqid ( coe1𝑂 ) = ( coe1𝑂 )
62 2 15 3 13 34 14 61 ply1coe ( ( 𝐴 ∈ Ring ∧ 𝑂𝐿 ) → 𝑂 = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) )
63 60 62 syl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → 𝑂 = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) )
64 63 eqcomd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) = 𝑂 )
65 64 fveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) = ( coe1𝑂 ) )
66 65 fveq1d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( coe1𝑂 ) ‘ 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1𝑂 ) ‘ 𝑙 ) )
67 58 66 eqtrd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) ∧ 𝑙 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1𝑂 ) ‘ 𝑙 ) )
68 67 ralrimiva ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ∀ 𝑙 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1𝑂 ) ‘ 𝑙 ) )
69 eqid ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) )
70 2 3 69 61 eqcoe1ply1eq ( ( 𝐴 ∈ Ring ∧ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ∈ 𝐿𝑂𝐿 ) → ( ∀ 𝑙 ∈ ℕ0 ( ( coe1 ‘ ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) ) ‘ 𝑙 ) = ( ( coe1𝑂 ) ‘ 𝑙 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) = 𝑂 ) )
71 51 68 70 sylc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐼𝑂 ) decompPMat 𝑛 ) ( ·𝑠𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1𝐴 ) ) ) ) ) = 𝑂 )
72 17 71 eqtrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑇 ‘ ( 𝐼𝑂 ) ) = 𝑂 )