| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mp2pm2mp.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							mp2pm2mp.q | 
							⊢ 𝑄  =  ( Poly1 ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							mp2pm2mp.l | 
							⊢ 𝐿  =  ( Base ‘ 𝑄 )  | 
						
						
							| 4 | 
							
								
							 | 
							mp2pm2mp.m | 
							⊢  ·   =  (  ·𝑠  ‘ 𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							mp2pm2mp.e | 
							⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							mp2pm2mp.y | 
							⊢ 𝑌  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							mp2pm2mp.i | 
							⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							mp2pm2mplem2.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							mp2pm2mp.t | 
							⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑁  Mat  𝑃 )  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝑁  Mat  𝑃 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑃 ) )  | 
						
						
							| 12 | 
							
								1 2 3 8 4 5 6 7 10 11
							 | 
							mply1topmatcl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ (  ·𝑠  ‘ 𝑄 )  =  (  ·𝑠  ‘ 𝑄 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑄 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( var1 ‘ 𝐴 )  =  ( var1 ‘ 𝐴 )  | 
						
						
							| 16 | 
							
								8 10 11 13 14 15 1 2 9
							 | 
							pm2mpfval | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) )  →  ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  | 
						
						
							| 17 | 
							
								12 16
							 | 
							syld3an3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  | 
						
						
							| 18 | 
							
								1
							 | 
							matring | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring )  | 
						
						
							| 19 | 
							
								18
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝐴  ∈  Ring )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 )  | 
						
						
							| 21 | 
							
								2
							 | 
							ply1ring | 
							⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  Ring )  | 
						
						
							| 22 | 
							
								
							 | 
							ringcmn | 
							⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  CMnd )  | 
						
						
							| 23 | 
							
								18 21 22
							 | 
							3syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  CMnd )  | 
						
						
							| 24 | 
							
								23
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑄  ∈  CMnd )  | 
						
						
							| 25 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ℕ0  ∈  V )  | 
						
						
							| 27 | 
							
								19
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  𝐴  ∈  Ring )  | 
						
						
							| 28 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 29 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 )  | 
						
						
							| 32 | 
							
								8 10 11 1 31
							 | 
							decpmatcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 33 | 
							
								28 29 30 32
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 )  | 
						
						
							| 35 | 
							
								31 2 15 13 34 14 3
							 | 
							ply1tmcl | 
							⊢ ( ( 𝐴  ∈  Ring  ∧  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 )  ∈  ( Base ‘ 𝐴 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  𝐿 )  | 
						
						
							| 36 | 
							
								27 33 30 35
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  ∈  𝐿 )  | 
						
						
							| 37 | 
							
								36
							 | 
							fmpttd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) : ℕ0 ⟶ 𝐿 )  | 
						
						
							| 38 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑛  →  ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							oveqd | 
							⊢ ( 𝑘  =  𝑛  →  ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑘  =  𝑛  →  ( 𝑘 𝐸 𝑌 )  =  ( 𝑛 𝐸 𝑌 ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							oveq12d | 
							⊢ ( 𝑘  =  𝑛  →  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							cbvmptv | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							a1i | 
							⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							oveq2d | 
							⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							mpoeq3ia | 
							⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							mpteq2i | 
							⊢ ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 47 | 
							
								7 46
							 | 
							eqtri | 
							⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑛 ) 𝑗 )  ·  ( 𝑛 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 48 | 
							
								1 2 3 4 5 6 47 8 13 14 15
							 | 
							mp2pm2mplem5 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  finSupp  ( 0g ‘ 𝑄 ) )  | 
						
						
							| 49 | 
							
								3 20 24 26 37 48
							 | 
							gsumcl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  𝐿 )  | 
						
						
							| 50 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑂  ∈  𝐿 )  | 
						
						
							| 51 | 
							
								19 49 50
							 | 
							3jca | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐴  ∈  Ring  ∧  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  𝐿  ∧  𝑂  ∈  𝐿 ) )  | 
						
						
							| 52 | 
							
								1 2 3 4 5 6 7 8
							 | 
							mp2pm2mplem4 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  =  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) )  =  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							mpteq2dva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							oveq2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							fveq2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  =  ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							fveq1d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 ) )  | 
						
						
							| 59 | 
							
								19 50
							 | 
							jca | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐴  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝐴  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  | 
						
						
							| 61 | 
							
								
							 | 
							eqid | 
							⊢ ( coe1 ‘ 𝑂 )  =  ( coe1 ‘ 𝑂 )  | 
						
						
							| 62 | 
							
								2 15 3 13 34 14 61
							 | 
							ply1coe | 
							⊢ ( ( 𝐴  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑂  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  | 
						
						
							| 63 | 
							
								60 62
							 | 
							syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  𝑂  =  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							eqcomd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  𝑂 )  | 
						
						
							| 65 | 
							
								64
							 | 
							fveq2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  =  ( coe1 ‘ 𝑂 ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							fveq1d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) )  | 
						
						
							| 67 | 
							
								58 66
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑙  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							ralrimiva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ∀ 𝑙  ∈  ℕ0 ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 ) )  | 
						
						
							| 69 | 
							
								
							 | 
							eqid | 
							⊢ ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  =  ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) )  | 
						
						
							| 70 | 
							
								2 3 69 61
							 | 
							eqcoe1ply1eq | 
							⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  ∈  𝐿  ∧  𝑂  ∈  𝐿 )  →  ( ∀ 𝑙  ∈  ℕ0 ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) ) ) ‘ 𝑙 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑙 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  𝑂 ) )  | 
						
						
							| 71 | 
							
								51 68 70
							 | 
							sylc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑄  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑛 ) (  ·𝑠  ‘ 𝑄 ) ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑄 ) ) ( var1 ‘ 𝐴 ) ) ) ) )  =  𝑂 )  | 
						
						
							| 72 | 
							
								17 71
							 | 
							eqtrd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑇 ‘ ( 𝐼 ‘ 𝑂 ) )  =  𝑂 )  |