Metamath Proof Explorer


Theorem mp2pm2mplem1

Description: Lemma 1 for mp2pm2mp . (Contributed by AV, 9-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses mp2pm2mp.a 𝐴 = ( 𝑁 Mat 𝑅 )
mp2pm2mp.q 𝑄 = ( Poly1𝐴 )
mp2pm2mp.l 𝐿 = ( Base ‘ 𝑄 )
mp2pm2mp.m · = ( ·𝑠𝑃 )
mp2pm2mp.e 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
mp2pm2mp.y 𝑌 = ( var1𝑅 )
mp2pm2mp.i 𝐼 = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) )
Assertion mp2pm2mplem1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝐼𝑂 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mp2pm2mp.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mp2pm2mp.q 𝑄 = ( Poly1𝐴 )
3 mp2pm2mp.l 𝐿 = ( Base ‘ 𝑄 )
4 mp2pm2mp.m · = ( ·𝑠𝑃 )
5 mp2pm2mp.e 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
6 mp2pm2mp.y 𝑌 = ( var1𝑅 )
7 mp2pm2mp.i 𝐼 = ( 𝑝𝐿 ↦ ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) )
8 fveq2 ( 𝑝 = 𝑂 → ( coe1𝑝 ) = ( coe1𝑂 ) )
9 8 fveq1d ( 𝑝 = 𝑂 → ( ( coe1𝑝 ) ‘ 𝑘 ) = ( ( coe1𝑂 ) ‘ 𝑘 ) )
10 9 oveqd ( 𝑝 = 𝑂 → ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1𝑂 ) ‘ 𝑘 ) 𝑗 ) )
11 10 oveq1d ( 𝑝 = 𝑂 → ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑖 ( ( coe1𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) )
12 11 mpteq2dv ( 𝑝 = 𝑂 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) )
13 12 oveq2d ( 𝑝 = 𝑂 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) )
14 13 mpoeq3dv ( 𝑝 = 𝑂 → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) )
15 simp3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → 𝑂𝐿 )
16 simp1 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → 𝑁 ∈ Fin )
17 mpoexga ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ∈ V )
18 16 16 17 syl2anc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ∈ V )
19 7 14 15 18 fvmptd3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿 ) → ( 𝐼𝑂 ) = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) )