Step |
Hyp |
Ref |
Expression |
1 |
|
mp2pm2mp.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mp2pm2mp.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
3 |
|
mp2pm2mp.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
4 |
|
mp2pm2mp.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
5 |
|
mp2pm2mp.e |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
mp2pm2mp.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
7 |
|
mp2pm2mp.i |
⊢ 𝐼 = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
8 |
|
mp2pm2mplem2.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
9 |
1 2 3 4 5 6 7
|
mp2pm2mplem1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐼 ‘ 𝑂 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
10 |
9
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝐾 ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) decompPMat 𝐾 ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝐾 ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) decompPMat 𝐾 ) ) |
12 |
|
eqid |
⊢ ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 ) |
13 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) ) |
14 |
1 2 3 4 5 6 7 8 12 13
|
mp2pm2mplem2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) |
15 |
12 13
|
decpmatval |
⊢ ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) decompPMat 𝐾 ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 ) ) ) |
16 |
14 15
|
sylan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) decompPMat 𝐾 ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 ) ) ) |
17 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
18 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) ) |
19 |
18
|
oveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) |
20 |
19
|
mpteq2dv |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) |
23 |
|
simp2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) |
24 |
|
simp3 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑏 ∈ 𝑁 ) |
25 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ∈ V ) |
26 |
17 22 23 24 25
|
ovmpod |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) |
27 |
26
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( coe1 ‘ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
28 |
27
|
fveq1d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) |
29 |
28
|
mpoeq3dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) ) |
30 |
|
oveq1 |
⊢ ( 𝑎 = 𝑖 → ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) = ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝑎 = 𝑖 → ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) |
32 |
31
|
mpteq2dv |
⊢ ( 𝑎 = 𝑖 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑎 = 𝑖 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝑎 = 𝑖 → ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
35 |
34
|
fveq1d |
⊢ ( 𝑎 = 𝑖 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) |
36 |
|
simpl |
⊢ ( ( 𝑏 = 𝑗 ∧ 𝑘 ∈ ℕ0 ) → 𝑏 = 𝑗 ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝑏 = 𝑗 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) = ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) |
38 |
37
|
oveq1d |
⊢ ( ( 𝑏 = 𝑗 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) |
39 |
38
|
mpteq2dva |
⊢ ( 𝑏 = 𝑗 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑏 = 𝑗 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) |
41 |
40
|
fveq2d |
⊢ ( 𝑏 = 𝑗 → ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
42 |
41
|
fveq1d |
⊢ ( 𝑏 = 𝑗 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) |
43 |
35 42
|
cbvmpov |
⊢ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑏 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) |
44 |
29 43
|
eqtrdi |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) 𝑏 ) ) ‘ 𝐾 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) ) |
45 |
11 16 44
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝐾 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) ) |