| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mp2pm2mp.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							mp2pm2mp.q | 
							⊢ 𝑄  =  ( Poly1 ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							mp2pm2mp.l | 
							⊢ 𝐿  =  ( Base ‘ 𝑄 )  | 
						
						
							| 4 | 
							
								
							 | 
							mp2pm2mp.m | 
							⊢  ·   =  (  ·𝑠  ‘ 𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							mp2pm2mp.e | 
							⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							mp2pm2mp.y | 
							⊢ 𝑌  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							mp2pm2mp.i | 
							⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							mp2pm2mplem2.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7 8
							 | 
							mp2pm2mplem3 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝐾 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 )  | 
						
						
							| 12 | 
							
								8
							 | 
							ply1ring | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring )  | 
						
						
							| 13 | 
							
								12
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  Ring )  | 
						
						
							| 14 | 
							
								
							 | 
							ringcmn | 
							⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  CMnd )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  CMnd )  | 
						
						
							| 16 | 
							
								15
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝑃  ∈  CMnd )  | 
						
						
							| 17 | 
							
								16
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  CMnd )  | 
						
						
							| 18 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 19 | 
							
								18
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝑅  ∈  Ring )  | 
						
						
							| 20 | 
							
								19
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 )  | 
						
						
							| 24 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 25 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 26 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  𝑂  ∈  𝐿 )  | 
						
						
							| 27 | 
							
								26
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝑂  ∈  𝐿 )  | 
						
						
							| 28 | 
							
								27
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑂  ∈  𝐿 )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							⊢ ( coe1 ‘ 𝑂 )  =  ( coe1 ‘ 𝑂 )  | 
						
						
							| 30 | 
							
								29 3 2 23
							 | 
							coe1fvalcl | 
							⊢ ( ( 𝑂  ∈  𝐿  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							sylan | 
							⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 32 | 
							
								1 22 23 24 25 31
							 | 
							matecld | 
							⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 )  | 
						
						
							| 35 | 
							
								22 8 6 4 34 5 10
							 | 
							ply1tmcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 36 | 
							
								21 32 33 35
							 | 
							syl3anc | 
							⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ralrimiva | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑘  ∈  ℕ0 ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simp1lr | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑠  ∈  ℕ0 )  | 
						
						
							| 39 | 
							
								
							 | 
							oveq | 
							⊢ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  =  ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq1d | 
							⊢ ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							3simpa | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 43 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 )  | 
						
						
							| 44 | 
							
								1 43
							 | 
							mat0op | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 45 | 
							
								42 44
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 0g ‘ 𝐴 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑎  =  𝑖  ∧  𝑏  =  𝑗 ) )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 48 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 49 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 0g ‘ 𝑅 )  ∈  V )  | 
						
						
							| 50 | 
							
								45 46 47 48 49
							 | 
							ovmpod | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							oveq1d | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( ( 0g ‘ 𝑅 )  ·  ( 𝑥 𝐸 𝑌 ) ) )  | 
						
						
							| 53 | 
							
								18
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 54 | 
							
								8
							 | 
							ply1sca | 
							⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							syl | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  𝑅  =  ( Scalar ‘ 𝑃 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							fveq2d | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							oveq1d | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 0g ‘ 𝑅 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑥 𝐸 𝑌 ) ) )  | 
						
						
							| 58 | 
							
								8
							 | 
							ply1lmod | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod )  | 
						
						
							| 59 | 
							
								58
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  LMod )  | 
						
						
							| 60 | 
							
								59
							 | 
							ad4antr | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  𝑃  ∈  LMod )  | 
						
						
							| 61 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  𝑥  ∈  ℕ0 )  | 
						
						
							| 62 | 
							
								8 6 34 5 10
							 | 
							ply1moncl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 𝐸 𝑌 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 63 | 
							
								53 61 62
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑥 𝐸 𝑌 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 64 | 
							
								
							 | 
							eqid | 
							⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 )  | 
						
						
							| 65 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑃 ) )  | 
						
						
							| 66 | 
							
								10 64 4 65 11
							 | 
							lmod0vs | 
							⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝑥 𝐸 𝑌 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 67 | 
							
								60 63 66
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑃 ) )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 68 | 
							
								52 57 67
							 | 
							3eqtrd | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑠  <  𝑥 )  →  ( ( 𝑖 ( 0g ‘ 𝐴 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 70 | 
							
								40 69
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  ∧  𝑠  <  𝑥 )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							exp31 | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑠  <  𝑥  →  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							a2d | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ralimdva | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							impancom | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							3impib | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 76 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑘  =  𝑥  →  ( 𝑠  <  𝑘  ↔  𝑠  <  𝑥 ) )  | 
						
						
							| 77 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							oveqd | 
							⊢ ( 𝑘  =  𝑥  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 ) )  | 
						
						
							| 79 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑘  =  𝑥  →  ( 𝑘 𝐸 𝑌 )  =  ( 𝑥 𝐸 𝑌 ) )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							oveq12d | 
							⊢ ( 𝑘  =  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							eqeq1d | 
							⊢ ( 𝑘  =  𝑥  →  ( ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 )  ↔  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 82 | 
							
								76 81
							 | 
							imbi12d | 
							⊢ ( 𝑘  =  𝑥  →  ( ( 𝑠  <  𝑘  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑘  ∈  ℕ0 ( 𝑠  <  𝑘  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 ) 𝑗 )  ·  ( 𝑥 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 84 | 
							
								75 83
							 | 
							sylibr | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑠  <  𝑘  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( 0g ‘ 𝑃 ) ) )  | 
						
						
							| 85 | 
							
								10 11 17 37 38 84
							 | 
							gsummptnn0fz | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							fveq2d | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  =  ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							fveq1d | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝐾  ∈  ℕ0 )  | 
						
						
							| 89 | 
							
								88
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐾  ∈  ℕ0 )  | 
						
						
							| 90 | 
							
								36
							 | 
							expcom | 
							⊢ ( 𝑘  ∈  ℕ0  →  ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) )  | 
						
						
							| 91 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑘  ∈  ( 0 ... 𝑠 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							syl11 | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							ralrimiv | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑘  ∈  ( 0 ... 𝑠 ) ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 94 | 
							
								
							 | 
							fzfid | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 0 ... 𝑠 )  ∈  Fin )  | 
						
						
							| 95 | 
							
								8 10 20 89 93 94
							 | 
							coe1fzgsumd | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) )  | 
						
						
							| 96 | 
							
								87 95
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							mpoeq3dva | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) ) )  | 
						
						
							| 98 | 
							
								18
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring )  | 
						
						
							| 99 | 
							
								98
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝑅  ∈  Ring )  | 
						
						
							| 100 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 101 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 102 | 
							
								26
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑂  ∈  𝐿 )  | 
						
						
							| 103 | 
							
								102 91 30
							 | 
							syl2an | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 104 | 
							
								1 22 23 100 101 103
							 | 
							matecld | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 105 | 
							
								91
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 106 | 
							
								43 22 8 6 4 34 5
							 | 
							coe1tm | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 )  ∧  𝑘  ∈  ℕ0 )  →  ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑙  ∈  ℕ0  ↦  if ( 𝑙  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) )  | 
						
						
							| 107 | 
							
								99 104 105 106
							 | 
							syl3anc | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑙  ∈  ℕ0  ↦  if ( 𝑙  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) )  | 
						
						
							| 108 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑙  =  𝐾  →  ( 𝑙  =  𝑘  ↔  𝐾  =  𝑘 ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							ifbid | 
							⊢ ( 𝑙  =  𝐾  →  if ( 𝑙  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							adantl | 
							⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  ∧  𝑙  =  𝐾 )  →  if ( 𝑙  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 111 | 
							
								
							 | 
							simpl1r | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  𝐾  ∈  ℕ0 )  | 
						
						
							| 112 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  V  | 
						
						
							| 113 | 
							
								
							 | 
							fvex | 
							⊢ ( 0g ‘ 𝑅 )  ∈  V  | 
						
						
							| 114 | 
							
								112 113
							 | 
							ifex | 
							⊢ if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  ∈  V  | 
						
						
							| 115 | 
							
								114
							 | 
							a1i | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  ∈  V )  | 
						
						
							| 116 | 
							
								107 110 111 115
							 | 
							fvmptd | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 )  =  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 117 | 
							
								116
							 | 
							mpteq2dva | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) )  =  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							mpoeq3dva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) )  | 
						
						
							| 120 | 
							
								119
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( ( coe1 ‘ ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ‘ 𝐾 ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) )  | 
						
						
							| 121 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  𝐾  →  ( 𝑠  <  𝑥  ↔  𝑠  <  𝐾 ) )  | 
						
						
							| 122 | 
							
								
							 | 
							fveqeq2 | 
							⊢ ( 𝑥  =  𝐾  →  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 )  ↔  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) ) )  | 
						
						
							| 123 | 
							
								121 122
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝐾  →  ( ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  ↔  ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							rspcva | 
							⊢ ( ( 𝐾  ∈  ℕ0  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) ) )  | 
						
						
							| 125 | 
							
								1 43
							 | 
							mat0op | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							eqcomd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 127 | 
							
								126
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							ad3antlr | 
							⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 129 | 
							
								
							 | 
							elfz2nn0 | 
							⊢ ( 𝑘  ∈  ( 0 ... 𝑠 )  ↔  ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0  ∧  𝑘  ≤  𝑠 ) )  | 
						
						
							| 130 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ )  | 
						
						
							| 131 | 
							
								130
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  𝑘  ∈  ℝ )  | 
						
						
							| 132 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝑠  ∈  ℕ0  →  𝑠  ∈  ℝ )  | 
						
						
							| 133 | 
							
								132
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  𝑠  ∈  ℝ )  | 
						
						
							| 134 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℝ )  | 
						
						
							| 135 | 
							
								134
							 | 
							adantl | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℝ )  | 
						
						
							| 136 | 
							
								
							 | 
							lelttr | 
							⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑠  ∈  ℝ  ∧  𝐾  ∈  ℝ )  →  ( ( 𝑘  ≤  𝑠  ∧  𝑠  <  𝐾 )  →  𝑘  <  𝐾 ) )  | 
						
						
							| 137 | 
							
								131 133 135 136
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑘  ≤  𝑠  ∧  𝑠  <  𝐾 )  →  𝑘  <  𝐾 ) )  | 
						
						
							| 138 | 
							
								
							 | 
							animorr | 
							⊢ ( ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  <  𝐾 )  →  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) )  | 
						
						
							| 139 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝐾  ≠  𝑘  ↔  ¬  𝐾  =  𝑘 )  | 
						
						
							| 140 | 
							
								130
							 | 
							adantr | 
							⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  𝑘  ∈  ℝ )  | 
						
						
							| 141 | 
							
								
							 | 
							lttri2 | 
							⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( 𝐾  ≠  𝑘  ↔  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) ) )  | 
						
						
							| 142 | 
							
								134 140 141
							 | 
							syl2anr | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ≠  𝑘  ↔  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  <  𝐾 )  →  ( 𝐾  ≠  𝑘  ↔  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) ) )  | 
						
						
							| 144 | 
							
								139 143
							 | 
							bitr3id | 
							⊢ ( ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  <  𝐾 )  →  ( ¬  𝐾  =  𝑘  ↔  ( 𝐾  <  𝑘  ∨  𝑘  <  𝐾 ) ) )  | 
						
						
							| 145 | 
							
								138 144
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑘  <  𝐾 )  →  ¬  𝐾  =  𝑘 )  | 
						
						
							| 146 | 
							
								145
							 | 
							ex | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑘  <  𝐾  →  ¬  𝐾  =  𝑘 ) )  | 
						
						
							| 147 | 
							
								137 146
							 | 
							syld | 
							⊢ ( ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑘  ≤  𝑠  ∧  𝑠  <  𝐾 )  →  ¬  𝐾  =  𝑘 ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							exp4b | 
							⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( 𝐾  ∈  ℕ0  →  ( 𝑘  ≤  𝑠  →  ( 𝑠  <  𝐾  →  ¬  𝐾  =  𝑘 ) ) ) )  | 
						
						
							| 149 | 
							
								148
							 | 
							com24 | 
							⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( 𝑠  <  𝐾  →  ( 𝑘  ≤  𝑠  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) ) )  | 
						
						
							| 150 | 
							
								149
							 | 
							expimpd | 
							⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝑘  ≤  𝑠  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) ) )  | 
						
						
							| 151 | 
							
								150
							 | 
							com23 | 
							⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑘  ≤  𝑠  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) ) )  | 
						
						
							| 152 | 
							
								151
							 | 
							imp | 
							⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑘  ≤  𝑠 )  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) )  | 
						
						
							| 153 | 
							
								152
							 | 
							3adant2 | 
							⊢ ( ( 𝑘  ∈  ℕ0  ∧  𝑠  ∈  ℕ0  ∧  𝑘  ≤  𝑠 )  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) )  | 
						
						
							| 154 | 
							
								129 153
							 | 
							sylbi | 
							⊢ ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝐾  ∈  ℕ0  →  ¬  𝐾  =  𝑘 ) ) )  | 
						
						
							| 155 | 
							
								154
							 | 
							com13 | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) ) )  | 
						
						
							| 156 | 
							
								155
							 | 
							adantr | 
							⊢ ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  →  ( ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) ) )  | 
						
						
							| 157 | 
							
								156
							 | 
							imp | 
							⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) )  | 
						
						
							| 158 | 
							
								157
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) )  | 
						
						
							| 159 | 
							
								158
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  →  ¬  𝐾  =  𝑘 ) )  | 
						
						
							| 160 | 
							
								159
							 | 
							imp | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ¬  𝐾  =  𝑘 )  | 
						
						
							| 161 | 
							
								160
							 | 
							iffalsed | 
							⊢ ( ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 162 | 
							
								161
							 | 
							mpteq2dva | 
							⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 163 | 
							
								162
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) ) )  | 
						
						
							| 164 | 
							
								
							 | 
							ringmnd | 
							⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd )  | 
						
						
							| 165 | 
							
								164
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑅  ∈  Mnd )  | 
						
						
							| 166 | 
							
								
							 | 
							ovex | 
							⊢ ( 0 ... 𝑠 )  ∈  V  | 
						
						
							| 167 | 
							
								43
							 | 
							gsumz | 
							⊢ ( ( 𝑅  ∈  Mnd  ∧  ( 0 ... 𝑠 )  ∈  V )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 168 | 
							
								165 166 167
							 | 
							sylancl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 169 | 
							
								168
							 | 
							ad3antlr | 
							⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 170 | 
							
								169
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  ( 0g ‘ 𝑅 ) ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 171 | 
							
								163 170
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 172 | 
							
								171
							 | 
							mpoeq3dva | 
							⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 173 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 174 | 
							
								128 172 173
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  | 
						
						
							| 175 | 
							
								174
							 | 
							ex | 
							⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  ( 𝑠  ∈  ℕ0  ∧  𝑠  <  𝐾 ) )  →  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) )  | 
						
						
							| 176 | 
							
								175
							 | 
							expr | 
							⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  𝑠  ∈  ℕ0 )  →  ( 𝑠  <  𝐾  →  ( ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) )  | 
						
						
							| 177 | 
							
								176
							 | 
							a2d | 
							⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 ) )  ∧  𝑠  ∈  ℕ0 )  →  ( ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) )  | 
						
						
							| 178 | 
							
								177
							 | 
							exp31 | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) )  | 
						
						
							| 179 | 
							
								178
							 | 
							com14 | 
							⊢ ( ( 𝑠  <  𝐾  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  =  ( 0g ‘ 𝐴 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) )  | 
						
						
							| 180 | 
							
								124 179
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  ℕ0  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) )  | 
						
						
							| 181 | 
							
								180
							 | 
							ex | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) )  | 
						
						
							| 182 | 
							
								181
							 | 
							com25 | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( 𝐾  ∈  ℕ0  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) ) )  | 
						
						
							| 183 | 
							
								182
							 | 
							pm2.43i | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑠  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) ) )  | 
						
						
							| 184 | 
							
								183
							 | 
							impcom | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑠  ∈  ℕ0  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) ) ) )  | 
						
						
							| 185 | 
							
								184
							 | 
							imp31 | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑠  <  𝐾  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) )  | 
						
						
							| 186 | 
							
								185
							 | 
							com12 | 
							⊢ ( 𝑠  <  𝐾  →  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) )  | 
						
						
							| 187 | 
							
								165
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  𝑅  ∈  Mnd )  | 
						
						
							| 188 | 
							
								187
							 | 
							adantl | 
							⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  𝑅  ∈  Mnd )  | 
						
						
							| 189 | 
							
								188
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Mnd )  | 
						
						
							| 190 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 0 ... 𝑠 )  ∈  V )  | 
						
						
							| 191 | 
							
								
							 | 
							lenlt | 
							⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑠  ∈  ℝ )  →  ( 𝐾  ≤  𝑠  ↔  ¬  𝑠  <  𝐾 ) )  | 
						
						
							| 192 | 
							
								134 132 191
							 | 
							syl2an | 
							⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( 𝐾  ≤  𝑠  ↔  ¬  𝑠  <  𝐾 ) )  | 
						
						
							| 193 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ≤  𝑠 )  →  𝐾  ∈  ℕ0 )  | 
						
						
							| 194 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ≤  𝑠 )  →  𝑠  ∈  ℕ0 )  | 
						
						
							| 195 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ≤  𝑠 )  →  𝐾  ≤  𝑠 )  | 
						
						
							| 196 | 
							
								
							 | 
							elfz2nn0 | 
							⊢ ( 𝐾  ∈  ( 0 ... 𝑠 )  ↔  ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0  ∧  𝐾  ≤  𝑠 ) )  | 
						
						
							| 197 | 
							
								193 194 195 196
							 | 
							syl3anbrc | 
							⊢ ( ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  ∧  𝐾  ≤  𝑠 )  →  𝐾  ∈  ( 0 ... 𝑠 ) )  | 
						
						
							| 198 | 
							
								197
							 | 
							ex | 
							⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( 𝐾  ≤  𝑠  →  𝐾  ∈  ( 0 ... 𝑠 ) ) )  | 
						
						
							| 199 | 
							
								192 198
							 | 
							sylbird | 
							⊢ ( ( 𝐾  ∈  ℕ0  ∧  𝑠  ∈  ℕ0 )  →  ( ¬  𝑠  <  𝐾  →  𝐾  ∈  ( 0 ... 𝑠 ) ) )  | 
						
						
							| 200 | 
							
								199
							 | 
							ad4ant23 | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( ¬  𝑠  <  𝐾  →  𝐾  ∈  ( 0 ... 𝑠 ) ) )  | 
						
						
							| 201 | 
							
								200
							 | 
							impcom | 
							⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  𝐾  ∈  ( 0 ... 𝑠 ) )  | 
						
						
							| 202 | 
							
								201
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐾  ∈  ( 0 ... 𝑠 ) )  | 
						
						
							| 203 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝐾  =  𝑘  ↔  𝑘  =  𝐾 )  | 
						
						
							| 204 | 
							
								
							 | 
							ifbi | 
							⊢ ( ( 𝐾  =  𝑘  ↔  𝑘  =  𝐾 )  →  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑘  =  𝐾 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 205 | 
							
								203 204
							 | 
							ax-mp | 
							⊢ if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  =  if ( 𝑘  =  𝐾 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 206 | 
							
								205
							 | 
							mpteq2i | 
							⊢ ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝑘  =  𝐾 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) )  | 
						
						
							| 207 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 208 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 209 | 
							
								27
							 | 
							adantl | 
							⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  𝑂  ∈  𝐿 )  | 
						
						
							| 210 | 
							
								209
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑂  ∈  𝐿 )  | 
						
						
							| 211 | 
							
								210 30
							 | 
							sylan | 
							⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 212 | 
							
								1 22 23 207 208 211
							 | 
							matecld | 
							⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 213 | 
							
								91 212
							 | 
							sylan2 | 
							⊢ ( ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 214 | 
							
								213
							 | 
							ralrimiva | 
							⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ∀ 𝑘  ∈  ( 0 ... 𝑠 ) ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 215 | 
							
								43 189 190 202 206 214
							 | 
							gsummpt1n0 | 
							⊢ ( ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  | 
						
						
							| 216 | 
							
								215
							 | 
							mpoeq3dva | 
							⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) )  | 
						
						
							| 217 | 
							
								
							 | 
							csbov | 
							⊢ ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  | 
						
						
							| 218 | 
							
								
							 | 
							csbfv | 
							⊢ ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  | 
						
						
							| 219 | 
							
								218
							 | 
							a1i | 
							⊢ ( 𝐾  ∈  ℕ0  →  ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  | 
						
						
							| 220 | 
							
								219
							 | 
							oveqd | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( 𝑖 ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) )  | 
						
						
							| 221 | 
							
								217 220
							 | 
							eqtrid | 
							⊢ ( 𝐾  ∈  ℕ0  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) )  | 
						
						
							| 222 | 
							
								221
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) )  | 
						
						
							| 223 | 
							
								222
							 | 
							mpoeq3dv | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 ) ) )  | 
						
						
							| 224 | 
							
								
							 | 
							oveq12 | 
							⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) )  | 
						
						
							| 225 | 
							
								224
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) )  | 
						
						
							| 226 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑎  ∈  𝑁 )  | 
						
						
							| 227 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑏  ∈  𝑁 )  | 
						
						
							| 228 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 )  ∈  V )  | 
						
						
							| 229 | 
							
								223 225 226 227 228
							 | 
							ovmpod | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) )  | 
						
						
							| 230 | 
							
								229
							 | 
							ralrimivva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) )  | 
						
						
							| 231 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  𝑁  ∈  Fin )  | 
						
						
							| 232 | 
							
								218
							 | 
							oveqi | 
							⊢ ( 𝑖 ⦋ 𝐾  /  𝑘 ⦌ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 )  | 
						
						
							| 233 | 
							
								217 232
							 | 
							eqtri | 
							⊢ ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 )  | 
						
						
							| 234 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 235 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 236 | 
							
								29 3 2 23
							 | 
							coe1fvalcl | 
							⊢ ( ( 𝑂  ∈  𝐿  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 237 | 
							
								236
							 | 
							3ad2antl3 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 238 | 
							
								237
							 | 
							3ad2ant1 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 239 | 
							
								1 22 23 234 235 238
							 | 
							matecld | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 240 | 
							
								233 239
							 | 
							eqeltrid | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 241 | 
							
								1 22 23 231 18 240
							 | 
							matbas2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 242 | 
							
								1 23
							 | 
							eqmat | 
							⊢ ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  ∈  ( Base ‘ 𝐴 )  ∧  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ∈  ( Base ‘ 𝐴 ) )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) )  | 
						
						
							| 243 | 
							
								241 237 242
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 )  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ) 𝑏 )  =  ( 𝑎 ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) 𝑏 ) ) )  | 
						
						
							| 244 | 
							
								230 243
							 | 
							mpbird | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  | 
						
						
							| 245 | 
							
								244
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  | 
						
						
							| 246 | 
							
								245
							 | 
							adantl | 
							⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  | 
						
						
							| 247 | 
							
								216 246
							 | 
							eqtrd | 
							⊢ ( ( ¬  𝑠  <  𝐾  ∧  ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  | 
						
						
							| 248 | 
							
								247
							 | 
							ex | 
							⊢ ( ¬  𝑠  <  𝐾  →  ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) ) )  | 
						
						
							| 249 | 
							
								186 248
							 | 
							pm2.61i | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑘  ∈  ( 0 ... 𝑠 )  ↦  if ( 𝐾  =  𝑘 ,  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 ) ,  ( 0g ‘ 𝑅 ) ) ) ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  | 
						
						
							| 250 | 
							
								97 120 249
							 | 
							3eqtrd | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  ∧  𝑠  ∈  ℕ0 )  ∧  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  | 
						
						
							| 251 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 )  | 
						
						
							| 252 | 
							
								29 3 2 251
							 | 
							coe1sfi | 
							⊢ ( 𝑂  ∈  𝐿  →  ( coe1 ‘ 𝑂 )  finSupp  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 253 | 
							
								26 252
							 | 
							syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( coe1 ‘ 𝑂 )  finSupp  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 254 | 
							
								29 3 2 251 23
							 | 
							coe1fsupp | 
							⊢ ( 𝑂  ∈  𝐿  →  ( coe1 ‘ 𝑂 )  ∈  { 𝑥  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 )  ∣  𝑥  finSupp  ( 0g ‘ 𝐴 ) } )  | 
						
						
							| 255 | 
							
								
							 | 
							elrabi | 
							⊢ ( ( coe1 ‘ 𝑂 )  ∈  { 𝑥  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 )  ∣  𝑥  finSupp  ( 0g ‘ 𝐴 ) }  →  ( coe1 ‘ 𝑂 )  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 ) )  | 
						
						
							| 256 | 
							
								26 254 255
							 | 
							3syl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( coe1 ‘ 𝑂 )  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 ) )  | 
						
						
							| 257 | 
							
								
							 | 
							fvex | 
							⊢ ( 0g ‘ 𝐴 )  ∈  V  | 
						
						
							| 258 | 
							
								
							 | 
							fsuppmapnn0ub | 
							⊢ ( ( ( coe1 ‘ 𝑂 )  ∈  ( ( Base ‘ 𝐴 )  ↑m  ℕ0 )  ∧  ( 0g ‘ 𝐴 )  ∈  V )  →  ( ( coe1 ‘ 𝑂 )  finSupp  ( 0g ‘ 𝐴 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  | 
						
						
							| 259 | 
							
								256 257 258
							 | 
							sylancl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 )  finSupp  ( 0g ‘ 𝐴 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) ) )  | 
						
						
							| 260 | 
							
								253 259
							 | 
							mpd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐴 ) ) )  | 
						
						
							| 261 | 
							
								250 260
							 | 
							r19.29a | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) ‘ 𝐾 ) )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  | 
						
						
							| 262 | 
							
								9 261
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝐾 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝐾 ) )  |