| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mp2pm2mp.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							mp2pm2mp.q | 
							⊢ 𝑄  =  ( Poly1 ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							mp2pm2mp.l | 
							⊢ 𝐿  =  ( Base ‘ 𝑄 )  | 
						
						
							| 4 | 
							
								
							 | 
							mp2pm2mp.m | 
							⊢  ·   =  (  ·𝑠  ‘ 𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							mp2pm2mp.e | 
							⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							mp2pm2mp.y | 
							⊢ 𝑌  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							mp2pm2mp.i | 
							⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							mp2pm2mplem2.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							mp2pm2mplem5.m | 
							⊢  ∗   =  (  ·𝑠  ‘ 𝑄 )  | 
						
						
							| 10 | 
							
								
							 | 
							mp2pm2mplem5.e | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							mp2pm2mplem5.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ℕ0  ∈  V )  | 
						
						
							| 14 | 
							
								1
							 | 
							matring | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring )  | 
						
						
							| 15 | 
							
								2
							 | 
							ply1lmod | 
							⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  LMod )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  LMod )  | 
						
						
							| 17 | 
							
								16
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑄  ∈  LMod )  | 
						
						
							| 18 | 
							
								14
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝐴  ∈  Ring )  | 
						
						
							| 19 | 
							
								2
							 | 
							ply1sca | 
							⊢ ( 𝐴  ∈  Ring  →  𝐴  =  ( Scalar ‘ 𝑄 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝐴  =  ( Scalar ‘ 𝑄 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑁  Mat  𝑃 )  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝑁  Mat  𝑃 ) )  =  ( Base ‘ ( 𝑁  Mat  𝑃 ) )  | 
						
						
							| 24 | 
							
								1 2 3 8 4 5 6 7 22 23
							 | 
							mply1topmatcl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 )  | 
						
						
							| 28 | 
							
								8 22 23 1 27
							 | 
							decpmatcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐼 ‘ 𝑂 )  ∈  ( Base ‘ ( 𝑁  Mat  𝑃 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 29 | 
							
								21 25 26 28
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 )  | 
						
						
							| 31 | 
							
								2 11 30 10 3
							 | 
							ply1moncl | 
							⊢ ( ( 𝐴  ∈  Ring  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  𝐿 )  | 
						
						
							| 32 | 
							
								18 31
							 | 
							sylan | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  𝐿 )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 )  | 
						
						
							| 35 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑙  →  ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 )  =  ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							oveqd | 
							⊢ ( 𝑘  =  𝑙  →  ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  =  ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑘  =  𝑙  →  ( 𝑘 𝐸 𝑌 )  =  ( 𝑙 𝐸 𝑌 ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							oveq12d | 
							⊢ ( 𝑘  =  𝑙  →  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  =  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							cbvmptv | 
							⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  =  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq2i | 
							⊢ ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  =  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							mpoeq3ia | 
							⊢ ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							mpteq2i | 
							⊢ ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 44 | 
							
								7 43
							 | 
							eqtri | 
							⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 )  ·  ( 𝑙 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 45 | 
							
								1 2 3 4 5 6 44 8
							 | 
							mp2pm2mplem4 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 )  =  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							mpteq2dva | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ) )  | 
						
						
							| 47 | 
							
								2 3 34
							 | 
							mptcoe1fsupp | 
							⊢ ( ( 𝐴  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 48 | 
							
								14 47
							 | 
							stoic3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							eqbrtrd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 50 | 
							
								13 17 20 3 29 32 33 34 9 49
							 | 
							mptscmfsupp0 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝐼 ‘ 𝑂 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑄 ) )  |