Step |
Hyp |
Ref |
Expression |
1 |
|
mp2pm2mp.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mp2pm2mp.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
3 |
|
mp2pm2mp.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
4 |
|
mp2pm2mp.m |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
5 |
|
mp2pm2mp.e |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
6 |
|
mp2pm2mp.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
7 |
|
mp2pm2mp.i |
⊢ 𝐼 = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) |
8 |
|
mp2pm2mplem2.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
9 |
|
mp2pm2mplem5.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
10 |
|
mp2pm2mplem5.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
11 |
|
mp2pm2mplem5.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
12 |
|
nn0ex |
⊢ ℕ0 ∈ V |
13 |
12
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ℕ0 ∈ V ) |
14 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
15 |
2
|
ply1lmod |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ LMod ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑄 ∈ LMod ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝑄 ∈ LMod ) |
18 |
14
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝐴 ∈ Ring ) |
19 |
2
|
ply1sca |
⊢ ( 𝐴 ∈ Ring → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → 𝐴 = ( Scalar ‘ 𝑄 ) ) |
21 |
|
simpl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
22 |
|
eqid |
⊢ ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 ) |
23 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) ) |
24 |
1 2 3 8 4 5 6 7 22 23
|
mply1topmatcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ) |
26 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
27 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
28 |
8 22 23 1 27
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 𝑂 ) ∈ ( Base ‘ ( 𝑁 Mat 𝑃 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
29 |
21 25 26 28
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
30 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
31 |
2 11 30 10 3
|
ply1moncl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐿 ) |
32 |
18 31
|
sylan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐿 ) |
33 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
34 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
35 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) ) |
36 |
35
|
oveqd |
⊢ ( 𝑘 = 𝑙 → ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) = ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) ) |
37 |
|
oveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 𝐸 𝑌 ) = ( 𝑙 𝐸 𝑌 ) ) |
38 |
36 37
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) = ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) |
39 |
38
|
cbvmptv |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) |
40 |
39
|
oveq2i |
⊢ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) ) |
41 |
40
|
a1i |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) ) ) |
42 |
41
|
mpoeq3ia |
⊢ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) ) ) |
43 |
42
|
mpteq2i |
⊢ ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 ) · ( 𝑘 𝐸 𝑌 ) ) ) ) ) ) = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) ) ) ) |
44 |
7 43
|
eqtri |
⊢ 𝐼 = ( 𝑝 ∈ 𝐿 ↦ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑙 ) 𝑗 ) · ( 𝑙 𝐸 𝑌 ) ) ) ) ) ) |
45 |
1 2 3 4 5 6 44 8
|
mp2pm2mplem4 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑘 ) = ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ) |
46 |
45
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ) ) |
47 |
2 3 34
|
mptcoe1fsupp |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
48 |
14 47
|
stoic3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
49 |
46 48
|
eqbrtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
50 |
13 17 20 3 29 32 33 34 9 49
|
mptscmfsupp0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐼 ‘ 𝑂 ) decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑄 ) ) |