Metamath Proof Explorer


Theorem mp3an

Description: An inference based on modus ponens. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses mp3an.1 𝜑
mp3an.2 𝜓
mp3an.3 𝜒
mp3an.4 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion mp3an 𝜃

Proof

Step Hyp Ref Expression
1 mp3an.1 𝜑
2 mp3an.2 𝜓
3 mp3an.3 𝜒
4 mp3an.4 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
5 1 4 mp3an1 ( ( 𝜓𝜒 ) → 𝜃 )
6 2 3 5 mp2an 𝜃