Metamath Proof Explorer
Description: An inference based on modus ponens. (Contributed by NM, 14-May-1999)
|
|
Ref |
Expression |
|
Hypotheses |
mp3an.1 |
⊢ 𝜑 |
|
|
mp3an.2 |
⊢ 𝜓 |
|
|
mp3an.3 |
⊢ 𝜒 |
|
|
mp3an.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
mp3an |
⊢ 𝜃 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mp3an.1 |
⊢ 𝜑 |
2 |
|
mp3an.2 |
⊢ 𝜓 |
3 |
|
mp3an.3 |
⊢ 𝜒 |
4 |
|
mp3an.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
5 |
1 4
|
mp3an1 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
6 |
2 3 5
|
mp2an |
⊢ 𝜃 |