Metamath Proof Explorer
Description: An inference based on modus ponens. (Contributed by NM, 14-May-1999)
|
|
Ref |
Expression |
|
Hypotheses |
mp3an.1 |
⊢ 𝜑 |
|
|
mp3an.2 |
⊢ 𝜓 |
|
|
mp3an.3 |
⊢ 𝜒 |
|
|
mp3an.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
mp3an |
⊢ 𝜃 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mp3an.1 |
⊢ 𝜑 |
| 2 |
|
mp3an.2 |
⊢ 𝜓 |
| 3 |
|
mp3an.3 |
⊢ 𝜒 |
| 4 |
|
mp3an.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 5 |
1 4
|
mp3an1 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 6 |
2 3 5
|
mp2an |
⊢ 𝜃 |