Metamath Proof Explorer


Theorem mp3an12

Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses mp3an12.1 𝜑
mp3an12.2 𝜓
mp3an12.3 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion mp3an12 ( 𝜒𝜃 )

Proof

Step Hyp Ref Expression
1 mp3an12.1 𝜑
2 mp3an12.2 𝜓
3 mp3an12.3 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
4 1 3 mp3an1 ( ( 𝜓𝜒 ) → 𝜃 )
5 2 4 mpan ( 𝜒𝜃 )