Metamath Proof Explorer
Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005)
|
|
Ref |
Expression |
|
Hypotheses |
mp3an12.1 |
⊢ 𝜑 |
|
|
mp3an12.2 |
⊢ 𝜓 |
|
|
mp3an12.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
mp3an12 |
⊢ ( 𝜒 → 𝜃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mp3an12.1 |
⊢ 𝜑 |
| 2 |
|
mp3an12.2 |
⊢ 𝜓 |
| 3 |
|
mp3an12.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 4 |
1 3
|
mp3an1 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 5 |
2 4
|
mpan |
⊢ ( 𝜒 → 𝜃 ) |