Metamath Proof Explorer


Theorem mp3an12i

Description: mp3an with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016)

Ref Expression
Hypotheses mp3an12i.1 𝜑
mp3an12i.2 𝜓
mp3an12i.3 ( 𝜒𝜃 )
mp3an12i.4 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
Assertion mp3an12i ( 𝜒𝜏 )

Proof

Step Hyp Ref Expression
1 mp3an12i.1 𝜑
2 mp3an12i.2 𝜓
3 mp3an12i.3 ( 𝜒𝜃 )
4 mp3an12i.4 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
5 1 2 4 mp3an12 ( 𝜃𝜏 )
6 3 5 syl ( 𝜒𝜏 )