Metamath Proof Explorer
Description: mp3an with antecedents in standard conjunction form and with one
hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
mp3an12i.1 |
⊢ 𝜑 |
|
|
mp3an12i.2 |
⊢ 𝜓 |
|
|
mp3an12i.3 |
⊢ ( 𝜒 → 𝜃 ) |
|
|
mp3an12i.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
mp3an12i |
⊢ ( 𝜒 → 𝜏 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mp3an12i.1 |
⊢ 𝜑 |
2 |
|
mp3an12i.2 |
⊢ 𝜓 |
3 |
|
mp3an12i.3 |
⊢ ( 𝜒 → 𝜃 ) |
4 |
|
mp3an12i.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜃 ) → 𝜏 ) |
5 |
1 2 4
|
mp3an12 |
⊢ ( 𝜃 → 𝜏 ) |
6 |
3 5
|
syl |
⊢ ( 𝜒 → 𝜏 ) |