Metamath Proof Explorer


Theorem mp3an13

Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005)

Ref Expression
Hypotheses mp3an13.1 𝜑
mp3an13.2 𝜒
mp3an13.3 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion mp3an13 ( 𝜓𝜃 )

Proof

Step Hyp Ref Expression
1 mp3an13.1 𝜑
2 mp3an13.2 𝜒
3 mp3an13.3 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
4 2 3 mp3an3 ( ( 𝜑𝜓 ) → 𝜃 )
5 1 4 mpan ( 𝜓𝜃 )