Metamath Proof Explorer


Theorem mp3an1i

Description: An inference based on modus ponens. (Contributed by NM, 5-Jul-2005)

Ref Expression
Hypotheses mp3an1i.1 𝜓
mp3an1i.2 ( 𝜑 → ( ( 𝜓𝜒𝜃 ) → 𝜏 ) )
Assertion mp3an1i ( 𝜑 → ( ( 𝜒𝜃 ) → 𝜏 ) )

Proof

Step Hyp Ref Expression
1 mp3an1i.1 𝜓
2 mp3an1i.2 ( 𝜑 → ( ( 𝜓𝜒𝜃 ) → 𝜏 ) )
3 2 com12 ( ( 𝜓𝜒𝜃 ) → ( 𝜑𝜏 ) )
4 1 3 mp3an1 ( ( 𝜒𝜃 ) → ( 𝜑𝜏 ) )
5 4 com12 ( 𝜑 → ( ( 𝜒𝜃 ) → 𝜏 ) )