Description: An inference based on modus ponens. (Contributed by NM, 5-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mp3an1i.1 | ⊢ 𝜓 | |
| mp3an1i.2 | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | ||
| Assertion | mp3an1i | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an1i.1 | ⊢ 𝜓 | |
| 2 | mp3an1i.2 | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → 𝜏 ) ) | |
| 3 | 2 | com12 | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) → ( 𝜑 → 𝜏 ) ) |
| 4 | 1 3 | mp3an1 | ⊢ ( ( 𝜒 ∧ 𝜃 ) → ( 𝜑 → 𝜏 ) ) |
| 5 | 4 | com12 | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) |